Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Informatica
Área: Area V: Automatas y Lenguajes
(Programa del año 2016)
(Programa en trámite de aprobación)
(Programa presentado el 16/07/2017 12:30:43)
I - Oferta Académica
Materia Carrera Plan Año Periodo
(OPTATIVA) METAHEURISTICAS POBLACIONALES LIC.CS.COMP. 32/12 2016 2° cuatrimestre
(OPTATIVA) METAHEURISTICAS POBLACIONALES ING. EN COMPUT. 28/12 2016 2° cuatrimestre
(OPTATIVAS) METAHEURISTICAS POBLACIONALES ING. INFORM. 026/12- 08/15 2016 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total B - Teoria con prácticas de aula y laboratorio Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 2 Hs. 2 Hs. 2 Hs. 6 Hs. 2º Cuatrimestre 08/08/2016 18/11/2016 15 90
IV - Fundamentación
Las técnicas metaheurísticas han mostrado ser capaces de resolver una gran variedad de problemas del mundo real. En la actualidad, el diseño y desarrollo de este tipo de enfoques se ha ampliado a muchos campos de aplicación debido a su versatilidad y simpleza.
V - Objetivos
Se espera que el alumno adquiera conocimiento introductorio de las metaheurísticas de mayor difusión en la actualidad. Se pretende además, que el alumno conozca acerca de sus posibles campos de aplicación vinculados a la práctica profesional y la investigación científica.
VI - Contenidos
Unidad 1: Introducción. Inteligencia computacional, sus ramas. Metaheurísticas de Trayectoria y Poblacionales. Ventajas y desventajas de las metaheurísticas sobre otros enfoques. Metaheurísticas inspiradas en la naturaleza y de otras fuentes. Ejemplos de metaheurísticas basadas en trayectoria: simulated annealing, búsqueda por vecindario variable, búsqueda local iterada. Introducción a los Algoritmos Evolutivos. Otros enfoques: Inteligencia Colectiva. Optimización basada en el comportamiento de colonias de hormigas. Optimización vía Cúmulos de Partículas. Estudios experimentales con las distintas metaheurísticas. Convergencia y calidad de los resultados. Campos de aplicación de Metaheurísticas.


Unidad 2: Algoritmos Genéticos y otros algoritmos evolutivos. Representación del espacio de soluciones. Evaluación de los individuos: función de fitness. Mecanismos de selección y operadores genéticos. Convergencia de Algoritmos Evolutivos. Aplicaciones de la Computación Evolutiva. Introducción a la Evolución Diferencial.


Unidad 3: Colonias de Hormigas. Rastros de feromona, su densidad. Optimización por simulación de Colonias de hormigas (ACO). Familia de algoritmos derivados de la metaheurísticas ACO. Aplicación a problemas de optimización combinatoria.


Unidad 4: Cúmulos de partículas. Inteligencia colectiva. Evaluación, comparación e imitación. Optimización por cúmulos de Partículas. Optimización en espacios continuos y discretos. Aplicaciones de interés.


Unidad 5: Sistemas Inmunes Artificiales. Presentación y descripción de las teorías inmunes que inspiran a los principales algoritmos inmunes. Distintas variantes. Aplicaciones.


VII - Plan de Trabajos Prácticos
Las características del curso permiten un desarrollo teórico completo junto con prácticos de corto alcance para entender el funcionamiento de los principales enfoques discutidos y realizar una evaluación continua de los contenidos.

Para cada una de las bolillas, se requerirá de la entrega de un trabajo práctico que consistirá en un breve reporte de un estudio experimental y respuestas a preguntas teóricas de cada uno de los algoritmos estudiados.

Al final de la exposición de los contenidos teóricos, se plantearán proyectos integradores (individuales y/o grupales) que profundicen en una o varias de las metaheurísticas abordadas en el curso y que derivará en un reporte técnico producto de un estudio experimental específico
VIII - Regimen de Aprobación

La materia es promocional y se aprueba con:
a. La presentación de un reporte técnico integral, escrito de calidad científica que describa y analice los resultados de aplicar y/o comparar distintas metaheurísticas o variaciones de alguna de las metaheurísticas estudiadas en el curso.
b. Exposición oral del proyecto presentado en forma escrita a los efectos de evaluar de manera integral a cada alumno.
IX - Bibliografía Básica
[1] Simon, D. – “Evolutionary Optimization Algorithms”, Wiley, 2013.
[2] Engelbrecht, A.P. – “Fundamentals of Computational Swarm Intelligence”, Wilwey, 2005.
[3] Yang, X., Cu, Zi, Xiao, R., Gandomi, A. H. y Karamanoglu, A. (Editores) – “Swarm Intelligence and Bio-Inspired Computation - Theory and Applications”, Series Elsevier Insights, Elsevier, 2013.
[4] Talbi, E. – “Metaheuristics: From Design to Implementation”, Wiley, 2009.
[5] Glover, F. G. y Kochenberger, G.A. (Editores) – “Handbook of Metaheuristics” (International Series in Operations Research & Management Science), 2003.
[6] Dorigo, M. y Stützle, T. – “Ant Colony Optimization”, MIT Press, 2004.
[7] Price, K.V.; Storn, R.M. y Lampinen, J.A. – “Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series), Springer; 2005.
[8] Michalewicz Z. – “Genetic Algorithms + Data Structures = Evolutions Programs”, Springer-Verlag, Third, Extended Edition, 1996.
[9] Feoktistov, V. – “Differential Evolution, In Search of Solutions”. Springer Science+Business Media, LLC, 2006.
[10] Clerc, M. – “Particle Swarm Optimization”, ISTE Ltd, 2006.
[11] Zheng J., Chen Y. and Zhang W. "A Survey of artificial immune applications", Springer Netherlands, vol 34, n 1, pp 19-34, 2010
[12] De Castro L. and Timmis J. Artificial immune systems: A new computational intelligence approach. Great Britain: Springer-Verlag, New York, 2002.
X - Bibliografia Complementaria
 
XI - Resumen de Objetivos
Introducción a las Metaheurísticas. Clasificación. Aplicación de metaheurísticas: Diseño y análisis de experimentos. Algoritmos Evolutivos. Inteligencia Colectiva: Optimización por Cúmulo de Partículas, Optimización basada en el Comportamiento de Hormigas. Algoritmos de Estimación de Distribución. Aplicaciones.
XII - Resumen del Programa
Unidad 1: Introducción
Unidad 2: Algoritmos Evolutivos
Unidad 3: Optimización Basada en Colonias de Hormigas
Unidad 4: Optimización Basada en Cúmulos de Partículas
Unidad 5: Sistemas Inmunes
XIII - Imprevistos