Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2016)
(Programa en trámite de aprobación)
(Programa presentado el 11/04/2016 11:08:05)
I - Oferta Académica
Materia Carrera Plan Año Periodo
ALGEBRA I PROF.EN FÍSICA 16/06 2016 1° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
OLIVERA, ESTELA ZULMA Prof. Responsable P.Adj Exc 40 Hs
PEPA RISMA, LUCIANA BEATRIZ Responsable de Práctico JTP Exc 40 Hs
REY, YANINA FATIMA Responsable de Práctico A.1ra Simp 10 Hs
SPOSETTI MINELLA, MELINA AYELE Responsable de Práctico A.1ra Simp 10 Hs
ESTRUGO, EMILIANO JUAN JOSE Auxiliar de Práctico A.2da Simp 10 Hs
LUCERO QUEVEDO, ANDRES MAURICI Auxiliar de Práctico A.2da Simp 10 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
8 Hs.  Hs.  Hs.  Hs. 8 Hs. 1º Cuatrimestre 14/03/2016 24/06/2016 15 140
IV - Fundamentación
El programa responde a los contenidos mínimos de las carreras para las cuales se dicta, y el enfoque teórico-práctico, con demostraciones formales y aplicaciones, tiene como objetivo desarrollar distintas capacidades básicas en Álgebra.
V - Objetivos / Resultados de Aprendizaje
Al finalizar el curso se espera que el alumno sea capaz de:
• Manejar las técnicas primarias de razonamiento en el Algebra.
• Ser capaces de reconstruir y analizar una demostración formal.
• Ser capaces de demostrar resultados nuevos.-
• Saber usar los conocimientos teóricos para resolver problemas de aplicación.
• Aplicar las herramientas adquiridas en las demás disciplina.
VI - Contenidos
Números Complejos.
Unidad imaginaria. Forma binómica o canónica. Operaciones en forma binómica. Representación gráfica. Forma polar o trigonométrica. Producto y división en forma polar. Forma exponencial de un número complejo. Fórmula de Euler.. Teorema de DeMoivre. Raíces de un número complejo. Representación gráfica..

Lógica
Proposiciones. Valores de verdad. Proposiciones simples. Proposiciones compuestas. Tablas de verdad. Operaciones con proposiciones: negación, conjunción, disyunción, condicional y bicondicional. Tautológias y contradicciones. Equivalencias lógicas, álgebra de proposiciones. Enunciados condicionales; condicionales directo, recíproco, contrario y contrarrecíproco, cuantificadores. Negación de cuantificadores. Demostración. Métodos de demostración: directo- contrarrecíproca, Demostración de bicondicionales.

Conjuntos
Conceptos primitivos: conjunto, elemento y pertenencia. Definición por extensión y por comprensión. Representación simbólica. Representación gráfica: diagramas de Venn. Cardinalidad. Conjuntos especiales: universal, conjunto unitario y conjunto vacío. Relaciones entre conjuntos: Igualdad de conjuntos, inclusión, doble inclusión. Operaciones entre conjuntos: unión, intersección. Conjuntos disjuntos o mutuamente excluyentes. Diferencia entre conjuntos. Propiedades de las operaciones y relaciones entre ellas. Complemento. Propiedades. Diferencia simétrica. Propiedades

Vectores en R2 y R3
Vectores en el plano y en el espacio. Vectores equipolentes. Coordenadas cartesianas y polares de un vector. Operaciones entre vectores: suma, multiplicación por un escalar, producto punto o escalar. Propiedades. Condición de perpendicularidad. Proyección ortogonal de un vector sobre otro. Producto vectorial. Propiedades.

Geometría del espacio
Rectas en el plano y en el espacio: ecuación vectoria, paramétrica y simétrica. Posiciones relativas en el plano y en el espacio. Planos: ecuación vectorial y escalar. Aplicaciones. Posiciones relativas de planos en el espacio. Ecuación de un plano dado s tres puntos, un punto y una recta. Intersección de planos. Graficar planos

Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales. Soluciones de ecuaciones lineales. Interpretación geométrica de sistemas de 2x2 y sistemas de 3x3.Sistemas equivalentes. Método de eliminación gaussiana y método de reducción de Gauss−Jordan. Sistemas homogéneos de ecuaciones lineales.
Matrices
Matrices. Orden, operaciones matriciales. Matriz nula y matriz identidad. Inversa de una matriz. Matrices elementales. Forma matricial de un sistema de ecuaciones lineales. Solución de sistemas de ecuaciones lineales a través de la matriz inversa.

VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en la resolución de ejercicios propuestos.
VIII - Regimen de Aprobación
Esta materia puede promocionarse y/o regularizarse

Para Regularizar

Se tomarán dos (2) exámenes parciales de carácter teórico – práctico. Cada uno tendrá dos (2) recuperaciones.
Para la aprobación de los parciales o sus recuperaciones se requiera una calificación no inferior a seis (6).
El alumno que haya aprobado los parciales o sus recuperaciones, obtiene la condición de regular.

Para Promocionar

Se tomarán dos (2) exámenes parciales de carácter teórico – práctico. Cada una tendrá dos (2) recuperaciones.
Para la aprobación de los parciales o sus recuperaciones se requiera una calificación no inferior a siete (7).
El alumno que haya aprobado los parciales debe rendir un examen integrador de la materia. La nota final para la promoción sin examen surgirá del promedio entre la nota obtenida en este examen y los parciales, la cual no debe ser inferior a siete (7).
En cualquier de los casos (regularidad o promoción)
El alumno que haya asistido a menos del 80% de las clases prácticas anteriores a la fecha de algún parcial no tendrá la posibilidad de rendir dicho parcial y quedará libre por faltas.
El alumno que no apruebe algún parcial en alguna de las instancias fijadas quedará libre por parciales.

Examen Final

El alumno regular para aprobar la materia debe rendir un examen final de carácter teórico sobre todos los temas del programa, en los turnos previstos en el calendario académico.

El examen será ORAL o ESCRITO.

Los alumnos libres para aprobar la materia deberán rendir un examen final práctico y uno teórico, ambos sobre todos los temas del programa, en los turnos previstos en el calendario académico. La reprobación de alguno de ellos es eliminatoria. En caso de aprobar ambos, la nota surgirá como un promedio de las dos notas obtenidas.
IX - Bibliografía Básica
[1] • Apuntes de la materia.
[2] • Anton H., Introducción al Álgebra Lineal, Noriega Editores.
[3] • Kolman B., Algebra Lineal con aplicaciones y MATLAB, Prentice Hall.
[4] • Leon S., Algebra Lineal con aplicaciones, Compañía Editorial Continental, S. A.
X - Bibliografia Complementaria
[1] • Strang G., Introducción al Álgebra Lineal, Wellesley−Cambridge Press.
[2] • Algebra y Trigonometría con Geometría Analítica. E. Swokowski y J. Cole. IX Edición. Editorial Thomson.
[3] • Algebra I. A. Rojo XV Edición. Editorial Librería El Ateneo.
[4] • Matemática I. M. de Guzmán y J. Colera. Editorial Anaya.
[5] • Precalculo. Michael Sullivan. IV Edición. Editorial: Prentice Hall.
XI - Resumen de Objetivos

Al finalizar el curso se espera que el alumno sea capaz de:

• Manejar las técnicas primarias de razonamiento en el Algebra.
• Ser capaces de reconstruir y analizar una demostración formal.
• Ser capaces de demostrar resultados nuevos.-
• Saber usar los conocimientos teóricos para resolver problemas de aplicación.
• Aplicar las herramientas adquiridas en las demás disciplina.
XII - Resumen del Programa
Números Complejos.
Lógica
Conjuntos
Vectores en R2 y R3
Geometría del espacio
Sistemas de ecuaciones lineales
Matrices

XIII - Imprevistos
 
XIV - Otros