Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2015)
(Programa en trámite de aprobación)
(Programa presentado el 21/09/2015 11:21:27)
I - Oferta Académica
Materia Carrera Plan Año Periodo
PROBABILIDAD Y ESTADISTICA ING. EN ALIMENTOS 7/08 2015 1° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
QUINTAS, LUIS GUILLERMO Prof. Responsable P.Tit. Exc 40 Hs
DI GENNARO, MARIA EDITH Responsable de Práctico JTP Exc 40 Hs
MUÑOZ, NELLY NANCY Responsable de Práctico A.1ra Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 2 Hs. 3 Hs.  Hs. 5 Hs. 1º Cuatrimestre 16/03/2015 26/06/2015 15 75
IV - Fundamentación
El programa responde a los contenidos mínimos de las carreras para las cuales se dicta y el enfoque incluye clases teóricas y prácticos de aula con énfasis en aspectos conceptuales y aplicaciones.
V - Objetivos / Resultados de Aprendizaje
El objetivo del curso es introducir a los alumnos en los conceptos básicos de la estadística poniendo especial énfasis en aspectos conceptuales. Se pretende que el alumno tenga una clara diferenciación entre población y muestra, entre parámetros poblacionales y muestrales y que conozca, al finalizar el curso, algunas técnicas comunes para estimar los primeros en función de los segundos.
VI - Contenidos
Población y muestra. Aleatoriedad. Tipos de datos. Representaciones gráficas. Tablas de frecuencias y de frecuencias relativas. Medidas de centralización y dispersión poblacionales y muestrales. Teorema de Tchebychev.


Distribución de probabilidad. Propiedades. Distribuciones y variables aleatorias discretas. Funciones de densidad y distribución. Media y varianza.


Distribución de igual probabilidad. Noción clásica de probabilidad. Elementos de análisis combinatorio. Noción frecuencial de probabilidad. Regularidad estadística. Distribución de probabilidad "a posteriori".


Probabilidades condicionales. Interpretación frecuencial. Propiedades. Teorema de la probabilidad total. Fórmula de Bayes. Regla de multiplicación. Independencia de eventos.


Ejemplos de distribuciones discretas. Bernoulli, binomial, geométrica, Poisson.


Distribuciones y variables aleatorias continuas. Función de densidad y distribución. Media y varianza. Distribución normal. Cálculo de probabilidades. Aproximación normal para la distribución binomial. Teorema de DeMoivre-Laplace.


Distribuciones muestrales. Distribución de la media y la varianza muestral. Distribución de una proporción muestral. Distribución de una diferencia de medias muestrales. Distribución de una diferencia de proporciones muestrales.


Estimadores. Estimadores puntuales para la media y la varianza. Intervalo de confianza para la media poblacional para muestras grandes. Teorema central del límite.


Intervalo de confianza para proporciones, diferencia de medias y proporciones. Muestras grandes. Intervalos de confianza con muestras pequeñas.


Pruebas de hipótesis. Elementos de una prueba. Prueba de hipótesis para la media poblacional. Prueba de hipótesis para una proporción poblacional.


Prueba de hipótesis para la varianza poblacional. Prueba de hipótesis para diferencia de medias y proporciones poblacionales. Grandes y pequeñas muestras.


Modelo probabilístico lineal simple. Método de mínimos cuadrados. Cálculo y estimación para la s2. Inferencia sobre los parámetros del modelo. Estimación. Coeficiente de correlación


VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en la resolución de ejercicios propuestos. Se enfatizará en los aspectos muestrales de la estadística. Parte de los ejercicios se resolverán con computadora utilizando paquetes estadísticos.
VIII - Regimen de Aprobación
Se propone un régimen de promoción.
• Se tomarán dos (2) exámenes parciales teórico práctico y un examen integral al finalizar el cursado. Cada uno de los exámenes tendrá una recuperación.
• El alumno que apruebe todos los exámenes (o sus recuperaciones) con al menos seis (6) y haya asistido al 75% de las clases teórico-prácticas y de laboratorio, promocionará la materia.
• El alumno que no promocione, pero que haya obtenido al menos cuatro (4) en los exámenes (o sus recuperaciones) regularizará la materia y deberá rendirla en los turnos regulares para aprobarla.
• El alumno que obtenga menos de cuatro en algún examen y su recuperación quedará libre.
• Los alumnos libres deberán rendir un examen práctico y uno teórico en los turnos regulares. La reprobación de alguno de ellos es eliminatorio. En caso de aprobar ambos, la nota surgirá como un promedio de las dos notas obtenidas.
IX - Bibliografía Básica
[1] • Estadística para Administradores, W. Mendenhall, Grupo Editorial Iberoamérica, 1990.
X - Bibliografia Complementaria
[1] • Estadística Matemática con Aplicaciones, W. Mendenhall, R. Sheaffer y D. Wackerly, Grupo Editorial Iberoamérica, 1994.
[2] • A First Course in Probability, S. Ross, Macmillan Publishers, 1988.
XI - Resumen de Objetivos
El objetivo del curso es introducir a los alumnos en los conceptos básicos de la estadística poniendo especial énfasis en aspectos conceptuales. Se pretende que el alumno tenga una clara diferenciación entre población y muestra, entre parámetros poblacionales y muestrales y que conozca, al finalizar el curso, algunas técnicas comunes para estimar los primeros en función de los segundos.
XII - Resumen del Programa
Conceptos básicos. Población y muestras. Estadística descriptiva. Probabilidades. Distribuciones discretas y continuas. Distribución normal. Estimación puntual y por intervalos de confianza. Pruebas de hipótesis. Regresión lineal. Correlación.
XIII - Imprevistos
 
XIV - Otros