Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2013)
(Programa en trámite de aprobación)
(Programa presentado el 09/05/2014 09:24:59)
I - Oferta Académica
Materia Carrera Plan Año Periodo
CALCULO III LIC.EN CS.MAT. 18/06 2013 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
FERNANDEZ, CARMEN ADELA Prof. Responsable P.Adj Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 4 Hs. 6 Hs.  Hs. 10 Hs. 2º Cuatrimestre 08/08/2013 15/11/2013 15 150
IV - Fundamentación
Los contenidos de este curso son herramientas básicas fundamentales en el área del Análisis Matemático. Topología básica, Sucesiones y Series Numéricas y Funcionales, criterios y tipos de convergencia, Series de Taylor, Límites, Continuidad e Integrales de Riemann son algunos de los conceptos desarrollados.
V - Objetivos / Resultados de Aprendizaje
Manejar los conceptos y las técnicas primarias de razonamiento en el Análisis Matemático. Aplicar el campo de las herramientas específicas de la disciplina en estudios más avanzados del Análisis Matemático.
VI - Contenidos
Unidad 1: Sucesiones y Series Numéricas
Convergencia de sucesiones. Subsucesiones. Límite inferior y límite superior. Algunas sucesiones especiales. Convergencia de series. Criterios elementales de convergencia. Criterios avanzados de convergencia. Algunas series especiales. Operaciones con series.

Unidad 2: Topología básica
Conjuntos abiertos y cerrados. Conjuntos compactos. El Conjunto de Cantor. Conjuntos conexos y disconexos en el conjunto de los números reales.

Unidad 3: Límites y Continuidad de Funciones
Definición y propiedades básicas del Límite de una función. Funciones continuas. Propiedades topológicas y continuidad. Discontinuidades. Funciones Monótonas.

Unidad 4: La Integral
Particiones y concepto de Integral. Definición y existencia de la Integral. Propiedades de la Integral de Riemann. Resultados en Teoría de Integración.

Unidad 5: Sucesiones y Series de Funciones
Sucesiones de Funciones. Convergencia puntual. Convergencia uniforme. Condición de Cauchy. Convergencia uniforme y continuidad. Convergencia uniforme, diferenciación e integración Sumas parciales Convergencia uniforme de series de funciones. Criterios de convergencia. Integración y diferenciación de series de funciones .Criterio de Weierstrass para la convergencia uniforme de series de funciones.

Unidad 6: Series de Potencias. Series de potencias. Convergencia. Álgebra de las series de potencias. Derivación e integración. Radio de convergencia. Series de Taylor. Funciones exponencial y trigonométrica. Logaritmos y potencias de números reales.


VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en teoría.
VIII - Regimen de Aprobación
I: Sistema de regularidad
• Es obligatoria la asistencia al 80 de las clases.
• Aprobación de dos evaluaciones parciales con un porcentaje no inferior al 50%. Sólo se podrá recuperar una de las dos evaluaciones.
• En caso de no aprobar algunas de estas evaluaciones parciales, podrá lograr la condición de alumno regular rindiendo una evaluación general que consiste de los temas evaluados en las dos pruebas.
• Los alumnos que hayan obtenido la condición de regular, aprobarán la materia a través de un examen final en las fechas que el calendario universitario prevé para esta actividad.

II: Sistema de promoción
• La materia se podrá aprobar directamente, sin el examen final (promoción) obteniendo calificación no inferior al 70% en cada una de las evaluaciones parciales o en la recuperación y aprobando una evaluación integradora oral.
• El alumno que aprobó alguna evaluación con menos del 70% (obtuvo entre 50% y menos del 70%) puede presentarse a la correspondiente recuperación para intentar la promoción. La nota que se le considerará será la última obtenida.
III.- Para alumnos libres:
La aprobación de la materia se obtendrá rindiendo un examen práctico escrito y en caso de aprobar éste, deberá rendir en ese mismo turno de examen, un examen teórico.
IX - Bibliografía Básica
[1] • “Real Analysis and Foundations”. Steven G. Krantz Ed. Chapman & Hall/CRC Second Edition
[2] • “Principles of Mathematical Analysis” Walter Rudin. Mc Graw Hill. Inc.
X - Bibliografia Complementaria
[1] "Introducción al Cálculo y al Análisis Matemático". Courant John Ed. Limusa
XI - Resumen de Objetivos

Manejar los conceptos aplicándolos tanto en solución de diversos ejercicios, como en aplicaciones a otras disciplinas como en física.
XII - Resumen del Programa
Unidad 1: Sucesiones y Series Numéricas
Unidad 2: Topología básica
Unidad 3: Límites y Continuidad
Unidad 4: Integrales de Riemann
Unidad 5: Sucesiones y Series de Funciones
Unidad 6: Series de Potencias

XIII - Imprevistos
 
XIV - Otros