Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2012)
(Programa en trámite de aprobación)
(Programa presentado el 20/12/2012 11:03:35)
I - Oferta Académica
Materia Carrera Plan Año Periodo
CALCULO III LIC.EN CS.MAT. 18/06 2012 2° cuatrimestre
CALCULO III LIC.MAT.APLIC. 17/06 2012 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
FERNANDEZ, CARMEN ADELA Prof. Responsable P.Adj Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 4 Hs. 6 Hs.  Hs. 10 Hs. 2º Cuatrimestre 06/08/2012 16/11/2012 15 150
IV - Fundamentación
Los contenidos de este curso son herramientas básicas fundamentales en el área del Análisis Matemático. Topología básica, Sucesiones y Series Numéricas y Funcionales, criterios y tipos de convergencia, Series de Taylor, Límites, Continuidad e Integrales de Riemann son algunos de los conceptos desarrollados.
V - Objetivos / Resultados de Aprendizaje
Manejar los conceptos y las técnicas primarias de razonamiento en el Análisis Matemático. Aplicar el campo de las herramientas específicas de la disciplina en estudios más avanzados del Análisis Matemático.
VI - Contenidos
Unidad 1:Topología básica


Conjuntos abiertos y cerrados. Conjuntos compactos, perfectos, conexos.


Unidad 2: Sucesiones y Series Numéricas


Convergencia de sucesiones. Subsucesiones. Límite inferior y límite superior. Algunas sucesiones especiales. Convergencia de series. Criterios elementales de convergencia. Criterios avanzados de convergencia. Algunas series especiales. Operaciones con series.


Unidad 3: Límites y Continuidad


Límites de funciones. Funciones continuas. Continuidad y compacidad. Continuidad y conexidad. Discontinuidades. Funciones Monótonas.


Unidad 4: Sucesiones y Series de Funciones
Sucesiones de funciones. Convergencia puntual. Convergencia uniforme. Condición de Cauchy. Convergencia uniforme y continuidad. Convergencia uniforme, diferenciación e integración Sumas parciales Convergencia uniforme de series de funciones. Criterios de convergencia. Integración y diferenciación de series de funciones .Criterio de Weierstrass para la convergencia uniforme de series de funciones. Series de potencias. Convergencia. Álgebra de las series de potencias. Derivación e integración. Radio de convergencia. Series de Taylor. Funciones exponencial y trigonométrica. Logaritmos y potencias de números reales.

Unidad 5: Integrales de Riemann


Particiones y concepto de Integral. Definición y existencia de la Integral. Propiedades de la Integral de Riemann. Resultados en Teoría de Integración.


VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en teoría.
VIII - Regimen de Aprobación
I: Sistema de regularidad
• Es obligatoria la asistencia al 80 de las clases.
• Aprobación de dos evaluaciones parciales con un porcentaje no inferior al 60%. Cada una de ellas tendrá una recuperación.
• En caso de no aprobar algunas de estas evaluaciones parciales, podrá lograr la condición de alumno regular rindiendo una evaluación general que consiste de los temas evaluados en las dos pruebas.
• Los alumnos que hayan obtenido la condición de regular, aprobarán la materia a través de un examen final en las fechas que el calendario universitario prevé para esta actividad.

II: Sistema de promoción
• La materia se podrá aprobar directamente, sin el examen final (promoción) obteniendo calificación no inferior al 70% en cada una de las evaluaciones parciales o en la recuperación y aprobando una evaluación integradora oral.
• El alumno que aprobó alguna evaluación con menos del 70% (obtuvo entre 60% y menos del 70%) puede presentarse a la correspondiente recuperación para intentar la promoción. La nota que se le considerará será la última obtenida.
III.- Para alumnos libres:
La aprobación de la materia se obtendrá rindiendo un examen práctico escrito y en caso de aprobar éste, deberá rendir en ese mismo turno de examen, un examen teórico.
IX - Bibliografía Básica
[1] • “Principles of Mathematical Analysis” Walter Rudin. Mc Graw Hill. Inc.
[2] • “Real Analysis and Foundations”. Steven G. Krantz Ed. Chapman & Hall/CRC Second Edition .
X - Bibliografia Complementaria
[1] "Introducción al Cálculo y al Análisis Matemático". Courant John Ed. Limusa
XI - Resumen de Objetivos

Manejar los conceptos aplicándolos tanto en solución de diversos ejercicios, como en aplicaciones a otras disciplinas como en física.
XII - Resumen del Programa
Unidad 1: Topología básica
Unidad 2: Sucesiones y Series Numéricas
Unidad 3: Límites y Continuidad
Unidad 4: Sucesiones y Series de Funciones
Unidad 5: Integrales de Riemann

XIII - Imprevistos
 
XIV - Otros