Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2010)
(Programa en trámite de aprobación)
(Programa presentado el 09/12/2010 10:34:52)
I - Oferta Académica
Materia Carrera Plan Año Periodo
LABORATORIO DE PROBABILIDAD Y ESTADISTICA PROF.MATEM. 010/09 2010 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
MORILLAS, PATRICIA MARIELA Prof. Responsable P.Adj Exc 40 Hs
BLOIS, MARIA INES Responsable de Práctico A.1ra Semi 20 Hs
MUÑOZ, NELLY NANCY Responsable de Práctico A.1ra Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs.  Hs.  Hs.  Hs.  Hs.
IV - Fundamentación
 
V - Objetivos / Resultados de Aprendizaje
Teniendo como marco los objetivos, fundamentos y perfil profesional del Pprofesorado de EGB 3 y Polimodal en Matemática y del Profesorado Universitario de Matemática se busca:
1. Estudiar algunos conceptos que complementen los contenidos de la asignatura Probabilidad y Estadística que se cursa en el cuatrimestre anterior, y que son relevantes para los alumnos de los profesorados en Matemática.
2. Que el alumno conozca características del proceso de enseñanzaaprendizaje de la probabilidad y la estadística, como así también herramientas y estrategias que pueden usarse en la transposición didáctica.
3. Que el alumno conozca el papel de los proyectos en la enseñanza y aprendizaje de la estadística, y cómo llevarlos a cabo a fin de entender las fases de una investigación estadística: planteamiento de un problema, decisión sobre los datos a escoger, recolección y análisis de datos y obtención de conclusiones sobre el problema planteado.
4. Que el alumno aprenda el manejo del software Statgraphics de uso específico en estadística.
VI - Contenidos
TEMA 1: Estadística descriptiva
Población y muestra. Variables aleatorias discretas y continuas. Datos: tipos, recolección, redondeo, notación sistemática, cifras significativas.
Distribuciones de frecuencias, frecuencia relativa y frecuencias relativas acumuladas. Histogramas y polígonos de frecuencias. Ojivas. Curvas de frecuencias.
Medidas de centralización: media (aritmética, aritmética ponderada, geométrica y armónica), mediana, moda. Relaciones entre las medidas de centralización. Cuartiles, deciles y percentiles.
Medidas de dispersión: rango, desviación media y típica, rango semiintercuartílico y entre precentiles 1090, varianza. Comprobación de Charlier y corrección de Sheppard. Relaciones entre las medidas de dispersión. Dispersión absoluta y relativa. Coeficiente de variación. Variable normalizada, referencias tipificadas.
Momentos, sesgo y curtosis. Comprobación de Charlier y corrección de Sheppard.
Teoría de muestreo. Muestreo aleatorio simple, estratificado y por conglomerados.
Uso de Statgraphics.

TEMA 2: Probabilidad
Introducción histórica: origen de la teoría de la probabilidad matemática, la probabilidad y la experiencia, defectos de la definición clásica, generalización del concepto de probabilidad.
Definición de probabilidad matemática: modelos matemáticos, experimento, espacio muestral, evento. Frecuencias relativas y probabilidades matemáticas. Definición axiomática de probabilidad.
Aleatoriedad y causalidad. Aleatoriedad y probabilidad. Procesos y secuencias aleatorias. Formalización de la idea de aleatoriedad. La aleatoriedad desde un punto de vista psicológico.
Probabilidad y geometría: marco geométrico en las probabilidades discretas, probabilidades geométricas.
Probabilidad e inferencia. Cálculo de la probabilidad de un evento. Métodos combinatorios. Leyes de la probabilidad. Probabilidad condicional. Eventos independientes.
Variable aleatoria. Distribución de probabilidad. Función de densidad y distribución. Esperanza, varianza y desviación estándar. Momentos. Teorema de Tchebyshev.
Distribuciones discretas: uniforme, Bernoulli, binomial, geométrica, hipergeométrica, binomial negativa y Poisson.
Distribuciones continuas: uniforme, normal, exponencial, tipo gamma, beta, Erlang, chi-cuadrado y Student. Aproximación normal para la distribución binomial. Teorema de DeMoivre-Laplace.
Generadores de números aleatorios. Operaciones con variables aleatorias. Suma y producto de variables aleatorias.
Muestreo y distribuciones muestrales. Distribución de la media muestral, de la proporción muestral, de una diferencia de medias muestrales y de una diferencia de proporciones muestrales. Teorema central del límite.

TEMA 3: Estadística inferencial
Estimación: Tipos de estimadores. Estimadores puntuales y sus propiedades. Intervalos de confianzas, coeficiente de confianza. Estimadores puntuales e intervalos de confianzas para la media, la proporción, diferencia de medias, diferencia de proporciones y varianza. Selección del tamaño de la muestra.
Pruebas de hipótesis: Definición y elementos. Tipos de errores. Prueba de hipótesis para la media, para una proporción, para la varianza, para diferencia de medias y proporciones. Nivel de significación y valores p.

TEMA 4: Regresión lineal y correlación.
Modelos estadísticos lineales. Método de mínimos cuadrados. Los estimadores del método de mínimos cuadrados y sus propiedades. Cálculo y estimación para la varianza del error. Inferencia sobre los parámetros del modelo. Predicción de un valor particular. Coeficientes de correlación y de determinación.

TEMA 5: Enseñanza y aprendizaje de la probabilidad y la estadística.
Cultura estadística. Situación actual y perspectivas futuras de la educación estadística. El papel de los proyectos en la enseñanza y aprendizaje de la estadística. La aleatoriedad, sus significados e implicaciones educativas. Educación estadística en la matemática escolar. Errores y dificultades en la comprensión de conceptos estadísticos y de probabilidad. Enfoques y estrategias para enseñar probabilidad y estadística. El uso de ordenadores y recursos en Internet para la enseñanza de la probabilidad y la estadística.

VII - Plan de Trabajos Prácticos
Los prácticos consistirán en la resolución de ejercicios y problemas en aula y usando el software Statgraphics.
VIII - Regimen de Aprobación
Para regularizar:
1. Participación activa y asistencia al 80% de las clases teóricas y de las clases prácticas.
2. Presentar en forma escrita, resueltos correctamente, todos los ejercicios que se asignen.
3. Cumplir con las exposiciones de ejercicios y de artículos sobre enseñanza de la probabilidad y la estadística que se asignen.
4. Aprobar con una calificación no inferior a 6 (seis) un examen parcial (o su recuperación), el cual versará sobre contenidos seleccionados de los artículos expuestos en clase.
5. Aprobar un trabajo con una calificación no inferior a 6 (seis), donde se aborde algún problema usando herramientas estadísticas.
Para promocionar:
Los alumnos que hayan regularizado la materia cumpliendo las condiciones antes mencionadas, para promocionar deberán además elaborar y defender un trabajo con una propuesta didáctica para enseñar algún tema de probabilidad y/o estadística destinado a alumnos de la EGB3 y Polimodal. El trabajo deberá elaborado siguiendo los lineamientos que indique el Profesor.
En la defensa deberá contestar adecuadamente a preguntas relacionadas con el trabajo presentado. Para la aprobación de este trabajo deberá obtener una calificación no inferior a 7 (siete). La nota final para la promoción sin examen final surgirá del promedio entre la nota obtenida en este trabajo, el parcial y el trabajo el detallado en el punto 5.
Examen final:
Alumnos regulares. Deberán elaborar y defender un trabajo con una propuesta didáctica para enseñar algún tema de probabilidad y/o estadística destinado a alumnos de la EGB3 y Polimodal. En la defensa deberá contestar adecuadamente a preguntas relacionadas con el trabajo presentado y además en relación al tema 5 del programa, relativo a los contenidos de los artículos que se mencionan el la bibliografía básica.
Alumnos libres. Se les tomará un examen escrito consistente en la resolución de ejercicios de probabilidad y estadística relativos a los temas 1 al 4 que se detallan en el programa. En este examen se evaluará la corrección de la solución de cada ejercicio y su redacción adecuada, orientada a ser presentadas a alumnos de EGB3 y Polimodal. De aprobar este examen, serán evaluados en una segunda instancia, con la misma modalidad que los alumnos regulares.
IX - Bibliografía Básica
[1]  Mendenhall, R. Beaver, R. y Beaver, B., Introducción a la probabilidad y estadística, Internacional Thompson Ed., 2002.
[2]  M. Spiegel, Estadística, Serie Schum, 2da. Edición, Mac Graw Hill, 1991.
[3]  Batanero, C. Los retos de la cultura estadística. Jornadas Interamericanas de Enseñanza de la Estadística, Buenos Aires. Conferencia inaugural. 2002.
[4]  C. Batanero, ¿Hacia dónde va la educación estadística?, Blaix, 15, 2-13. 2000.
[5]  C. Batanero, C. Díaz, El papel de los proyectos en la enseñanza y aprendizaje de la estadística, en J. Patricio Royo (Ed.), Aspectos didácticos de las matemáticas, 125164. Zaragoza: ICE. 2004.
[6]  Batanero, C . y Díaz, C. El papel de los proyectos en la enseñanza y aprendizaje de la estadística. I Congresso de Estatística e Investigação Operacional da Galiza e Norte de Portugal Guimarães, Portugal. 2005.
[7]  Batanero, C., Estepa, A. y Godino, J. D.. Análisis exploratorio de datos: sus posibilidades en la enseñanza secundaria . Suma, 9, 25-31. 1991.
[8]  Batanero, C.. Taller sobre análisis exploratorio de datos en la enseñanza secundaria . Actas de la Conferencia Internacional "Experiências e Expectativas do Ensino de Estatística - Desafios para o Século XXI" . Florianópolis, Santa Catarina, Brasil – 20 a 23 de Septiembre de 1999.
[9]  Godino, J. D.. ¿Qué aportan los ordenadores al aprendizaje y la enseñanza de la estadística? UNO, 5, 45-56. 1995.
[10]  Batanero, C.. Recursos para la educación estadística en Internet. UNO, 15, 13-26. 1998.
[11]  L. Santaló, Las probabilidades en la educación secundaria, en Enseñanza de las Matemáticas en la Educación Secundaria, RialpMadrid. 1995.
[12]  G. Chemello, G. Fernández, L. Gysisn. La enseñanza de la probabilidad y la geometría. Revista de Educación Matemática  Una mirada numérica. AZ Editora, 1997.
[13]  L. Gysin, La enseñanza de la noción de probabilidad, en Estrategias de enseñanza de la matemática. Licenciatura en Educación. Universidad Nacional de Quilmes. 2000.
X - Bibliografia Complementaria
[1]  Núcleos de Aprendizaje Prioritarios, 3er. Ciclo/Nivel Medio (7°, 8° y 9° años). Consejo Federal de Cultura y Educación. Ministerio de Educación, Ciencia y Tecnología. Presidencia de la Nación. Buenos Aires, Argentina, 2006.
[2]  Contenidos Básicos Comunes para la Educación Polimodal (Matemática). Consejo Federal de Cultura y Educación. Ministerio de Cultura y Educación. Presidencia de la Nación. Buenos Aires, Argentina, 1997.
[3]  H. Cramer, Elementos de la teoría de probabilidades y algunas de sus aplicaciones, Aguilar, 1972.
[4]  A First Course in Probability, S. Ross, Macmillan Publishers, 1988.
[5]  Página Web del Grupo de Investigaciones en Probabilidad y Estadística. Universidad de Granada. España. http://www.ugr.es/~batanero/
[6]  D. Franzini, Estadística, una ventana a la realidad. Trabajo inédito.
[7]  C. Batanero, L. Serrano, La aleatoriedad, sus significados e implicaciones educativas. Revista UNO  Probabilidad y Estadística (julio  5 1995).
[8]  L. Gysisn, G. Fernández. Probabilidades en espacios discretos. Matemática  Una mirada numérica. AZ Editora, 1997.
XI - Resumen de Objetivos
OBJETIVOS DEL CURSO (no más de 200 palabras):
Teniendo como marco los objetivos, fundamentos y perfil profesional del Pprofesorado de EGB 3 y Polimodal en Matemática y del Profesorado Universitario de Matemática se busca:
1. Estudiar algunos conceptos que complementen los contenidos de la asignatura Probabilidad y Estadística que se cursa en el cuatrimestre anterior, y que son relevantes para los alumnos de los profesorados en Matemática.
2. Que el alumno conozca características del proceso de enseñanzaaprendizaje de la probabilidad y la estadística, como así también herramientas y estrategias que pueden usarse en la transposición didáctica.
3. Que el alumno conozca el papel de los proyectos en la enseñanza y aprendizaje de la estadística, y cómo llevarlos a cabo a fin de entender las fases de una investigación estadística: planteamiento de un problema, decisión sobre los datos a escoger, recolección y análisis de datos y obtención de conclusiones sobre el problema planteado.
4. Que el alumno aprenda el manejo del software Statgraphics de uso específico en estadística.
XII - Resumen del Programa
PROGRAMA SINTETICO (no más de 300 palabras):
TEMA 1: Estadística descriptiva
Población y muestra. Variables aleatorias discretas y continuas. Datos. Distribuciones de frecuencias Histogramas y polígonos de frecuencias. Ojivas. Curvas de frecuencias.
Medidas de centralización. Medidas de dispersión, Momentos, sesgo y curtosis. Teoría de muestreo.
Uso de Statgraphics.
TEMA 2: Probabilidad
Introducción histórica. Definición de probabilidad matemática. Aleatoriedad.
Probabilidad y geometría. Probabilidad e inferencia. Cálculo de la probabilidad de un evento. Métodos combinatorios. Leyes de la probabilidad. Probabilidad condicional. Eventos independientes.
Variable aleatoria. Distribución de probabilidad. Función de densidad y distribución. Esperanza, varianza y desviación estándar. Momentos. Teorema de Tchebyshev. Distribuciones discretas y continuas. Distribución normal. Muestreo y distribuciones muestrales. Teorema central del límite.
TEMA 3: Estadística inferencial
Estimación: Estimadores puntuales y por intervalos de confianza. Selección del tamaño de la muestra.
Pruebas de hipótesis: Definición y elementos. Tipos de errores. Nivel de significación y valores p.
TEMA 5: Regresión lineal y correlación.
Modelos estadísticos lineales. Método de mínimos cuadrados y los estimadores asociados. Inferencia sobre los parámetros del modelo. Coeficientes de correlación y de determinación.
TEMA 6: Enseñanza y aprendizaje de la probabilidad y la estadística.
Cultura y educación estadística. El papel de los proyectos en la enseñanza y aprendizaje de la estadística. Errores y dificultades en la comprensión de conceptos estadísticos y de probabilidad. Enfoques y estrategias para enseñar probabilidad y estadística. El uso de ordenadores y recursos en Internet.
XIII - Imprevistos
 
XIV - Otros