Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas Área: Matematicas |
I - Oferta Académica | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
II - Equipo Docente | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
III - Características del Curso | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
IV - Fundamentación |
---|
Álgebra II es una asignatura interdisciplinaria que relaciona Matemática con diferentes áreas del conocimiento. A través de ella se puede lograr un dominio básico de los conceptos y técnicas que involucran el álgebra lineal tanto en sus aspectos teóricos como prácticos y que a su vez sirven de base para las futuras asignaturas con ellas relacionadas.
|
V - Objetivos / Resultados de Aprendizaje |
---|
• Desarrollar el pensamiento abstracto de tipo matemático, contribuyendo así a la formación matemática del estudiante.
• Conducir al estudiante al conocimiento y aplicación de las ideas básicas del Álgebra Lineal haciendo énfasis en el análisis y consecuencias de los diferentes teoremas, ilustrando su aplicabilidad en numerosos ejemplos. • Aplicar adecuadamente los conceptos del Álgebra Matricial y su operación en la solución de sistemas de ecuaciones lineales. • Conocer y utilizar los elementos y las técnicas del Álgebra Lineal para el trabajo con matrices, sistemas de ecuaciones, espacios vectoriales, valores y vectores propios y para la solución de problemas que involucran estos conceptos. • Reconocer la estructura de espacio vectorial y realizar actividades de aplicación de la misma. • Comprender el concepto de transformación lineal, su importancia y su manejo a través de matrices. |
VI - Contenidos |
---|
UNIDAD 1: Matrices y Sistemas de Ecuaciones
Álgebra de matrices. Sistemas lineales equivalentes. Tipos de matrices especiales. Matrices elementales. Inversión matricial. Caracterización de las matrices no singulares. Método para calcular la inversa de una matriz. UNIDAD 2: Determinantes El determinante de una matriz. Cofactores. Propiedades de los determinantes. Cálculo de determinantes. Regla de Cramer. Aplicaciones. UNIDAD 3: Espacios vectoriales. Definición. Axiomas. Ejemplos. Subespacios vectoriales. El espacio nulo de una matriz. Definición. Propiedades. Definición de conjunto de generadores de un espacio vectorial. Independencia, bases y dimensión. Interpretación geométrica. Teoremas. Espacio fila y espacio columna. Determinación de base y dimensión de los cuatros subespacios asociados a una matriz. UNIDAD 4: Ortogonalidad. Proyecciones escalares y vectoriales. Ortogonalidad. Subespacios ortogonales. Subespacios fundamentales. Espacios de productos internos. Normas. Problemas de cuadrados mínimos. Conjuntos ortonormales. Matrices ortogonales. Matrices de permutación. Conjuntos ortonormales y cuadrados mínimos. Proceso de ortogonalización de Gram-Schmidt. UNIDAD 5: Autovalores y autovectores. Definición. Polinomio característico. Diagonalización. Aplicaciones. Matrices Hermitianas. Teorma de Schur. Teorema Espectral. UNIDAD 6: Transformaciones lineales. Definición y ejemplos. Transformaciones lineales del plano. Transformaciones lineales en general. Imagen y Núcleo de una transformación lineal. Representación de transformaciones lineales en matrices. Teorema de representación. Cambio de bases. Similitud. UNIDAD 7: Formas cuadráticas. Definición. Cónicas. Definición geométrica de parábola, elipse e hipérbola. Elementos de cada una y gráfica de las cónicas centradas en el origen de coordenadas y desplazadas. Identificación de una cónica a partir de la ecuación general de segundo grado en dos variables. Aplicación de autovalores y autovectores. Cambio de coordenadas. Rotación de ejes. |
VII - Plan de Trabajos Prácticos |
---|
Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en teoría.
|
VIII - Regimen de Aprobación |
---|
• Es obligatoria la asistencia al 80% de las clases.
• Aprobación de dos evaluaciones parciales con un porcentaje no inferior al 60%. Cada una de ellas tendrá una recuperación. • En caso de no aprobar algunas de estas evaluaciones parciales, podrá lograr la condición de alumno regular rindiendo una evaluación general que consiste de los temas evaluados en las dos pruebas. • Los alumnos que hayan obtenido la condición de regular, aprobarán la materia a través de un examen final en las fechas que el calendario universitario prevé para esta actividad. II: Sistema de promoción • La materia se podrá aprobar directamente, sin el examen final (promoción) obteniendo calificación no inferior al 70% en cada una de las evaluaciones parciales o en la recuperación y aprobando una evaluación integradora oral. • Los alumnos que tengan aprobadas las asignaturas correlativas correspondientes antes de la evaluación integradora oral podrán acceder a la promoción. • El alumno que aprobó alguna evaluación con menos del 70% (obtuvo entre 60% y menos del 70%) puede presentarse a la correspondiente recuperación para intentar la promoción. La nota que se le considerará será la última obtenida. • El alumno en la recuperación general no se podrá presentar para intentar la promoción. III.- Para alumnos libres: La aprobación de la materia se obtendrá rindiendo un examen práctico escrito y en caso de aprobar éste, deberá rendir en ese mismo turno de examen, un examen teórico. |
IX - Bibliografía Básica |
---|
[1] • Algebra Lineal con aplicaciones. Steven Leon. Compañía Editorial Continental, S.A. de C.V. (Mexico). Tercera edición,
[2] • Introduction to Linear Algebra. Gilbert Strang. Wellesley-Cambrige Press (1993). |
X - Bibliografia Complementaria |
---|
[1] • Introducción al Algebra Lineal. Howard Anton. Ed.Limusa
[2] • Precalculo, Michael Sullivan, Prentice Hall, Cuarta edición (1997) |
XI - Resumen de Objetivos |
---|
Lograr un dominio básico de los conceptos y técnicas que involucran el álgebra lineal tanto en sus aspectos teóricos como prácticos y que a su vez sirvan de base para las futuras asignaturas con ellas relacionadas.
|
XII - Resumen del Programa |
---|
- Descomposición de matrices.
- Espacios vectoriales. Espacios fundamentales asociados a una matriz. Sistemas de ecuaciones lineales. - Matrices: autovalores, autovectores. Diagonalización. - Secciones cónicas |
XIII - Imprevistos |
---|
------------
|
XIV - Otros |
---|
|