

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Mecánica

(Programa del año 2009) (Programa en trámite de aprobación) (Presentado el 17/02/2010 12:13:02)

I - Oferta Académica

Materia	Carrera	Plan Año	Período
Mecanismos y Elementos de Máquinas	Ingeniería Electromecánica	2009	1° cuatrimestre
Mecanismos y Elementos de Máquinas	Ingeniería Industrial	2009	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
VERDUR, GUSTAVO ALBERTO	Prof. Responsable	P.Adj Exc	40 Hs
GUAYCOCHEA, RONIO	Responsable de Práctico	JTP Semi	20 Hs
GRECO, HUMBERTO	Auxiliar de Práctico	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	2 Hs	3 Hs	2 Hs	7 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
09/03/2009	19/07/2009	15	105

IV - Fundamentación

La necesidad de dotar al estudiante de ingeniera de una amplia base matemática y cientifica provoca que durante los primeros semestres de la carrera se limite su capacidad creadora, ya que para acreditar las materias que cursa tiene que seguir modelos de análisis ya establecidos y reconocidos como válidos, lo que lo induce a una actitud pasiva que poco beneficia a la larga su trabajo original y creativo; muchos alumnos, originalmente entusiasmados por el trabajo de campo del ingeniero, pierden ánimo ante el panorama inicial de su carrera, y su habilidad creadora yace inherte por largo tiempo, a menos que se les aliente y la ejerciten.

Otros toman estas materias cono la meta de la ingeniera y se pierden en estudios más propios de una formación cientifica que ingenieria. Han perdido la visión y confunden las herramientas de la ingeniera con sus fines.

El objeto de la ingeniera es proveer a la sociedad de los requisitos que la civilización contemporánea exige; es el camino por el que los recursos naturales se transforman en satisfactores sociales. A la ingeniería no le concierne el análisis de los fenómenos naturales y el establecimiento de modelos mateáticos para los mismos, lo cual es labor de la ciencia pura, sino su aplicación en la consecución de una meta definida, sea esta una máquina, un dispositivo eléctrico o electrónico, una carretera o cualquier otro bien.

El mecanismo por el cual una necesidad se convierte en una solución real y funcional se conoce como diseño. En otras palabras, el diseño es la fomu]ación de un plan, método o esquema para transformar una necesidad en un dispositivo capaz de satisfacerla de la mejor forma posible. Desde este punto de vista, el objetivo de la formación que recibe un estudiante de

ingeniería es capacitarlo para el diseño.

La capacidad del ingeniero para el diseño es vital, y dentro de ello, el estudio del diseño de los elementos de maquinas, visto desde su perspectiva mas realista resulta en un excelente medio para acrecentar esa capacidad, que sera la base fundamental para poder abordar posteriormente materias como Mecanica I ó Máquinas Térmicas , Mecánica II ó Máquinas Hidráulicas y Diseño de Maquinaria.

V - Objetivos / Resultados de Aprendizaje

Capacitar al estudiante para calcular, diseñar y seleccionar elementos de máquinas .

- . Proporcionar al alumno una preparación suficiente para que pueda realizar sin mucho esfuerzo el estudio metódico y el cálculo y diseño de otros elementos de máquinas no incluidos en el programa.
- . Habituar al estudiante a la búsqueda de datos y de la información necesaria para el diseño de elementos de máquinas en la forma y condiciones en que se presenta este tipo de problemas en la práctica de la ingeniería, así como tomar decisiones sobre los elementos a utilizar y la elección de los materiales, coeficientes, relaciones dimensionales, etc.
- . Introducir al alumno a tomar contacto con software especifico de cálculo y simulación de mecanismos y elementos , analizar los resultados y compararlos con los metodos clásicos

VI - Contenidos

BOLILLA No. 1: Criterios de diseño de los elementos de máquinas.

Tensiones debidas a variaciones de temperatura. Tensión producida por choque, Hipótesis de rotura. Tensiones de trabajo y tensiones admisibles. Coeficiente de seguridad. Cargas variables y límite de fatiga. Diagrama de Smith y de Goodman; otros criterios. Resistencia a la fatiga para distintas tensiones. Concentración de tensiones. Método de Soderberg aplicado a los materiales dúctiles para cargas axiales, flexión simple, torsión simple y flexotorsión. Aplicación de los criterios de Soderberg y de Goodman a los materiales frágiles. Resistencia a la fatiga para duración limitada. Uso del programaa MitCalc.

BOLILLA Nº 2: Ejes y Arboles

Descripción. Cargas. Cálculo de la sección en base a la resistencia para materiales dúctiles; caso general; flexión pura; torsión pura. Deformaciones por flexión y torsión, Vibraciones laterales; velocidad crítica. Gorrones. Gorrones extremos cilíndricos; resistencia mecánica y presión especifica; disipación del calor; limitación del desplazamiento axial. Gorrones extremos esféricos. Gorrones intermedios. Gorrones axiales. Gorrones de anillos. Uso del programaa MitCalc.

BOLILLA No. 3: Teoría de la transmisión de Potencia mediante engranajes.

Definiciones y clasificación. Ley fundamental del engrane. Línea de

engrane. Ruedas armónicas. Forma de los flancos. Cicloide, Epiciclode, Hipociclode, Evolvente de círculo.

BOLILLA No. 4: Engranajes para ejes Paralelos.

Ruedas frontales de dientes rectos. Designaciones y proporciones normales. Dentado cicloidal: trazado y características; ruedas armónicas; ventajas e inconvenientes. Dentado de evolvente: trazado y característica; longitud del segmento de engrane; insensibilidad respecto de la variación de la distancia entre centros; cremallera; dentado interior. Métodos de fabricación; fresas de disco, generación por cremallera; fresa generatriz; método Fellows; otros métodos. Interferencia y numero de dientes límite. Dentados corregidos: sin variación de la distancia entre centros; con desplazamiento del perfil, Dentado de perfil compuesto. Materiales empleados para la construcción de engranajes. Ruedas frontales de dientes helicoidales; Distribución de fuerzas; ventajas e inconvenientes.

BOLILLA No. 5: Dimensionado de engranajes de dientes rectos y helicoidales

Cálculo de engranajes cilíndricos de dientes rectos. Cálculo a la flexión por el método de Lewis-Barth. Cálculo a la flexión por el método de Buckingham; efectos dinámicos debidos a los errores de trazado; concentración de tensiones. Verificación de la resistencia al desgaste. Ancho del diente. Dimensiones de las ruedas. Cálculo de engranajes de dientes helicoidales. Uso del programaa MitCalc.

BOLILLA No. 6: Engranajes para ejes no paralelos y concurrentes.

Ruedas cónicas; características; superficies primitivas; aproximación de Tredgold; distribución de fuerzas. Cálculo de los dientes.

BOLILLA No. 7: Engranajes para ejes no paralelos y no concurrentes.

Ruedas cilíndricas de dientes helicoidales; descripción; relación de transmisión; selección de los ángulos de los dientes; empujes; rendimiento. Tornillo sinfín y rueda helicoidal; descripción; relación de transmisión. Selección y usos. Reversibilidad. Rendimiento. Diferentes tipos de ruedas y tornillos. Análisis de esfuerzos. Reacciones en los apoyos. Cálculo. Capacidad térmica de 1a caja.

BOLILLA No. 8: Uniones.

Tipos de uniones. Uniones fijas; soldaduras; diferentes métodos. Soldabilidad de los metales. Tipos de empalmes con cordones de soldadura. Construcciones soldadas. Cálculo de uniones soldadas. Uniones desmontables. Chavetas longitudinales y transversales. Espigas y pasaderas.

BOLILLA No. 9: Tornillos

Generación Tipos de roscas. Transmisión de esfuerzos. Rendimiento. Tornillo de unión. Solicitaciones en las uniones roscadas. Uniones sometidas a esfuerzos normales sin y con carga previa. Uniones sometidas a esfuerzos tangenciales. Uniones con esfuerzos de flexión en el tornillo. Uniones con cargas de impacto. Cálculo de los tornillos de unión. Tornillos de movimiento. Condición de irreversibilidad. Cálculo.Uso del programaa MitCalc.

BOLILLA No. 10: Lubricación y cojinetes de deslizamiento.

Regímenes de rozamiento. Lubricación. Propiedades de los lubricantes. Aceites y grasas. Viscosidad. Ley de Newton. Teoría de Petroff. Teoría y ecuación de Reynolds. Soluciones de la ecuación de Reynolds. Calculo de cojinetes; método de la línea operativa. Caudal de aceite, por película, de ranura, hidrodinámica, total. Pérdida de potencia. Temperatura operativa. Temperatura máxima de la película de aceite. Estudio del funcionamiento y cálculo de cojinetes cilíndricos partidos.

BOLILLA No. 11: Rodamientos

Clasificación. Tensiones producidas por el contacto entre cuerpos elásticos. Capacidad de carga de una bolilla. Distribución de la carga en los rodamientos. Capacidad de carga, capacidad dinámica y duración del rodamiento. Relación entre la capacidad de carga y la velocidad de rotación. Carga equivalente Carga variable. Capacidad de carga estática. Par de rozamiento. Selección de rodamientos. lubricación. Formas de montaje. Uso del programaa MitCalc.

BOLILLA No. 12: Transmisiones por fricción.

Fundamentos de las transmisiones por fricción. Fuerza de cierre. Transmisión entre ejes paralelos y entre ejes concurrentes. Ruedas de fricción: cálculo de la transmisión con ruedas metálicas y con ruedas no metálicas. Transmisiones por correas planas. Tensiones; influencia de la velocidad. Condiciones de servicio. Longitud de la correa abierta y cruzada. Arco de contacto. Transmisiones con pequeña distancia entre ejes. Orden de cálculo. Transmisiones por correas planas de tela, de tela y goma, de balata, de acero, orden de cálculo. Características de las poleas. Transmisiones por correas planas compuestas, de poliamida y de poliester. Transmisiones por correas trapeciales. Transmisiones con una polea, ranurada y otra lisa. Uso del programaa MitCalc.

BOLILLA No. 13: Resortes.

Resortes helicoidales de compresión de sección circular. Tensiones. Coeficiente y fórmula de Wahl. Deformaciones. Energía absorbida. Longitudes libre y de cierre. Pandeo. Materiales empleados. Cálculo estático para materiales dúctiles. Tensiones variables. líneas de Wahl y de cálculo. Coeficiente de seguridad. Oscilaciones y resonancia. Resortes de compresión de secciones rectangular y cuadrada. Resortes de tracción. Resortes de torsión. Resortes Belleville. Resortes planos y ballestas. Resortes de goma.Uso del programaa MitCalc.

BOLILLA No. 14: Levas.

Tipos de levas y de seguidores. Definiciones. Movimiento del seguidor. Estudio de las curvas básicas: aceleración constante; movimiento armónico simple; desplazamiento cicloidal. Función desplazamiento para mecanismos de alta velocidad; para levas D.R.R.D.; para levas R.R.R.. Angulo de presión; valor máximo. Curvatura del perfil de la leva; interferencias. Seguidor plano. Determinación del perfil de la leva. Dinámica de los sistemas de levas de alta velocidad.

BOLILLA No. 15: Cadenas y ruedas dentadas. Mecanismo biela-manivela.

Transmisiones por cadena y ruedas dentadas. Tipos de cadenas. Ruedas. Cálculo de cadenas de transmisión. Lubricación. Longitud. Cadenas transportadoras. Mecanismo biela-manivela; objeto y tipos. Mecanismo centrado; consideraciones fundamentales; desplazamiento del émbolo. Relación entre las velocidades, entre las aceleraciones y entre las fuerzas. Mecanismos especiales de biela y manivela. Manivelas frontales; cálculo. Cigüeñales y su cálculo. Bielas; formas de las cabezas; cálculo de la caña y de las cabezas. Crucetas; elementos componentes. Uso del programaa MitCalc.

BOLILLA No. 16: Acoplamientos, embragues y frenos.

Acoplamientos rígidos y flexibles. Acoplamiento cardánico. Embragues de discos y cónicos. Frenos de cinta, de zapatas y de discos.

BOLILLA No. 17: Modelización y simulación de mecanismos.

Introducción al programa Working Model 2Dy 3D. Configuración inicial. Comandos de diseño. Comandos de edición. Comandos de visualización. Introducción de datos. Introducción de datos mediante formulas. Inserción de cursores de control. Prevalidación de datos. Utilización elementos básicos preconfigurados. Carga de propiedades. Comportamiento en distintas condiciones. Interpretación de errores. Simulación e interpretación de resultados. Análisis cinemático. Análisis dinámico. Selección y configuración de curvas de salida.

VII - Plan de Trabajos Prácticos

- 1. Dimensionamiento de piezas sencillas sometidas a cargas estáticas de tracción, compresión, flexión, torsión y pandeo.
- 2. Cálculo de piezas simples sometidas a cargas de impacto y piezas entalladas soportando cargas fluctuantes.
- 3. Cálculo y dimensionamiento de engranajes de dientes rectos y de dientes helicoidales.
- 4. Cálculo de engranajes de dientes cónicos.
- 5. Cálculo de tornillo sinfín y rueda helicoidal.
- Cálculo de un árbol mixto sometido a cargas variables, determinando secciones, deformaciones y velocidad crítica.
- 7. Diseño de uniones soldadas y abulonadas.
- 8. Diseño de cojinetes de fricción para funcionamiento en régimen hidrodinámico.
- 9. Selección de rodamientos y diseño de su alojamiento.
- 10. Diseño de transmisiones por correas y poleas.
- 11. Cálculo de resortes.

12. Simulacion de sistemas simples y de mediana complejidad en Working Model.

VIII - Regimen de Aprobación

REGIMEN DE ALUMNOS REGULARES

Para obtener la condición de Regular, los alumnos deberán cumplimentar los siguientes requisitos:

- 1- Asistencia mínima al 80% de las clases prácticas efectivamente desarrolladas.
- 2- Aprobación del 100% de los trabajos prácticos dictados.
- 3- Aprobación de dos exámenes parciales teórico prácticos.
- 4- Presentación de una carpeta con la totalidad de los trabajos prácticos aprobados correctamente ordenados, dentro del término establecido por la Cátedra. La carpeta deberá ser presentada por el alumno en el momento del examen final para poder rendirlo.

APROBACION DE LA ASIGNATURA

- a) Ser alumno regular
- b) El examen final se rendirá por el último programa en vigencia al día del examen.
- c) Los alumnos libres rendirán según Ordenanza C.D. 001-91 del 03/07/91.

La metodología de examen para los alumos regulares se estructura sobre la base de un proyecto completo de un mecanismo o dispositivo, el cual se entrega con 7 días de anticipación a la fecha de examen al alumno, y será seguido por medio clases-consultas, por el profesor responsable. El alumno deberá exponer y defender el proyecto a través de planos, esquemas y memorias de cálculo correspondientes, se examinará al alumno en base a su habilidad de resolución y desarrollo del proyecto, la argumentación de decisiones y su justificación, la preparación para responder las preguntas teóricas y prácticas que pudieran surgir en el transcurso de la exposición y la presentación.

Para el alumno libre, la metodología es similar sólo que el proyecto presenta mayor grado de dificultad, además deberá presentar la carpeta de trabajos prácticos resuelta, antes de rendir y deberá acreditar todas las correlatividades en el plan de estudios para rendir la asignatura.

IX - Bibliografía Básica

- [1] 1- Aguirre Esponda:\\\"Diseño de elementos de máquinas\\\\". Ed.
- [2] 2- Shigley-Mitchell:\\\"Diseño en Ingeniería Mecánica\\\\". Ed. Mc-Graw-Hill.
- [3] 3- Faires:\\\"Diseño de Elementos de Máquinas\\\". Ed. Montaner y Simón.
- [4] 4- Robert L. Norton:\\\"Diseño de Maquinaria. Ed. Mgraw-Hill
- [5] 5- M.F.Spotts & T.E. Shoup:\\\"Elementos de maquinas. Ed. Prentice-Hall
- [6] 6- Cosme:\\\"Elementos de máquinas\\\". Ed. Marymar.
- [7] 7- Lauría-Falco:\\\"Apuntes de Mecanismos\\\". Ed. C.E.I, la Línea Recta.

- [8] 8- Lauría-Falco:\\\"Complementos de Mecanismos\\\\". Ed. C.E.I, la Línea
- [9] Recta.
- [10] 9- Lauría-Falco:\\\"Cálculo de elementos de máquinas para diversos
- [11] materiales y estados de carga\\\". Ed. C.E.I. La Línea Recta.
- [12] 10- Falco:\\\"Levas\\\". Ed. C.E.I. la Línea Recta.

X - Bibliografia Complementaria

- [1] 1- Hütte:\\\"Manual del ingeniero\\\". Ed. G. Gili.
- [2] 2- Dubbel:\\\"Manual del Constructor de Máquinas\\\". Ed. Labor.
- [3] 3- Vallance-Doughtie:\\\"Cálculo de Elementos de Máquinas\\\\". Ed. Alsina.
- [4] 4- Fratschner:\\\"Elementos de Máquinas\\\". Ed. G. Gili.
- [5] 5- Dobrovolski y otros:\\\"Elementos de Máquinas\\\". Ed. Mir.
- [6] 6- Niemann:\\\"Elementos de Máquinas\\\\". Ed. Labor.
- [7] 7- Buckingham:\\\"Analytical Mechanical of Gears\\\". Ed. Mc Graw-Hill.
- [8] 8- Wilckock-Booser:\\\"Bearing Design and Applications\\\\". Ed. Mc Graw-
- [9] Hill.
- [10] 9- Wahl:\\\"Mechanical Springs\\\\". Ed. J. Wiley.
- [11] 10- Palmgren:\\\"Técnica de los rodamientos de bolas y de rodillos\\\\".
- [12] Ed. Industrias S.K.F.
- [13] 11- Ham-Crane-Rogers:\\\"Mecánica de Máquinas\\\". Ed. Mc Graw-Hill.
- [14] 12- Timoshenko:\\\"Resistencia de materiales\\\\".
- [15] 13- Seely-Smith:\\\"Curso superior de resistencia de materiales\\\\".
- [16] 14- Teijeiro:\\\"Aplicaciones de la teoría de la lubricación\\\". Ed.
- [17] C.E.I, la Línea Recta.

XI - Resumen de Objetivos

Capacitar al estudiante para calcular, diseñar y seleccionar elementos de máquinas .

- . Proporcionar al alumno una preparación suficiente para que pueda realizar sin mucho esfuerzo el estudio metódico y el cálculo y diseño de otros elementos de máquinas no incluidos en el programa.
- . Habituar al estudiante a la búsqueda de datos y de la información necesaria para el diseño de elementos de máquinas en la forma y condiciones en que se presenta este tipo de problemas en la práctica de la ingeniería, así como tomar decisiones sobre los elementos a utilizar y la elección de los materiales, coeficientes, relaciones dimensionales, etc.
- . Introducir al alumno a tomar contacto con software especifico de cálculo y simulación de mecanismos y elementos , analizar los resultados y compararlos con los metodos clásicos

XII - Resumen del Programa

BOLILLA No. 1: Criterios de diseño de los elementos de máquinas.

BOLILLA Nº 2: Ejes y Arboles

BOLILLA No. 3: Teoría de la transmisión de Potencia mediante engranajes.

BOLILLA No. 4: Engranajes para ejes Paralelos.

BOLILLA No. 5: Dimensionado de engranajes de dientes rectos y helicoidales

BOLILLA No. 9: Tornillos		
BOLILLA No. 10: Lubricación y cojinetes de deslizamiento.		
BOLILLA No. 11: Rodamientos		
BOLILLA No. 12: Transmisiones por fricción.		
BOLILLA No. 16: Acoplamientos, embragues y frenos.		
BOLILLA No. 17: Modelización y sin	mulación de mecanismos.	
XIII - Imprevistos		
no se considera		
XIV - Otros		
ELEVAC	CIÓN y APROBACIÓN DE ESTE PROGRAMA	
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		

BOLILLA No. 6: Engranajes para ejes no paralelos y concurrentes.

BOLILLA No. 7: Engranajes para ejes no paralelos y no concurrentes.

Ruedas cónicas

BOLILLA No. 8: Uniones.