

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales

(Programa del año 2008) (Programa en trámite de aprobación) (Presentado el 26/05/2008 13:27:10)

Departamento: Fisica Area: Area I: Basica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
FISICA TERMICA I	LIC.EN FISICA		2008	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
FOLLARI, JORGE ALBERTO	Prof. Responsable	P.Asoc Exc	40 Hs
PERELLO, ANIBAL DANIEL	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
7 Hs	2 Hs	0 Hs	0 Hs	9 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	1° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
10/03/2008	20/06/2008	14	131

IV - Fundamentación

El presente curso es el primero dentro de la carrera referido

al estudio de la física térmica y se realiza luego de que el alumno estudió un primer nivel de mecánica, electricidad y magnetismo, ondas y óptica. Se trata de un curso clásico de termodinámica de nivel medio dentro de la Licenciatura en Fís

V - Objetivos / Resultados de Aprendizaje

Se pretende estudiar las leyes de la termodinámica, o sea el punto de vista macroscópico de la física térmica, poniendo énfasis en la teoría como una unidad lógica. Las numerosas aplicaciones que se estudian, permiten ver como se aplica la teoría, extraer conclusiones de los ejercicios propuestos o para afirmar conceptos teóricos cuya simple enunciado o descripción no pone de manifiesto todos sus aspectos de interés, u ofrece mayor dificultad en el aprendizaje.

Al finalizar el curso, los alumnos deberán tener claros los conceptos de la teoría y el método de aplicación para resolver casos concretos.

VI - Contenidos

BOLILLA N°1.- TEMPERATURA

Criterio macroscópico. Punto de vista microscópico. Comparación de los criterios macroscópico y microscópico. Objeto de la termodinámica.

Equilibrio térmico. Concepto de temperatura. Medida de la temperatura. Comparación de termómetros. Termómetro de gas. Temperatura en escala de los gases perfectos. Escala Celsius de temperatura. Termómetro de resistencia eléctrica. Par termoeléctrico.

Escala práctica internacional de temperaturas. Problemas.

BOLILLA N°2.- CARACTERISTICAS DE LOS SISTEMAS MACROSCOPICOS

Fluctuaciones en el equilibrio. Irreversibilidad y tendencia al equilibrio. Ejemplos.

Propiedades de la situación de equilibrio. Calor y temperatura. Magnitudes típicas. Problemas importantes de la física macroscópica.

Resumen de definiciones. Sugerencia de lecturas suplementarias. Problemas.

BOLILLA N°3.- SISTEMAS TERMODINAMICOS SENCILLOS

Equilibrio termodinámico. Diagrama PV para una sustancia pura. Diagrama PT de una sustancia pura. Superficie PVT. Ecuaciones de

estado. Cambios diferenciales de estado. Teoremas matemáticos. Hilo estirado. Lámina superficial. Pila reversible. Sólido paramagnético. Magnitudes intensivas y extensivas. Problemas.

BOLILLA N° 4.- TRABAJO

Trabajo. Procesos cuasi-estáticos. Trabajo de un sistema hidrostático.

Diagrama PV. El trabajo depende de una trayectoria. Trabajo en procesos cuasi-estáticos. Ejemplos: hilo metálico, lámina superficial

y pila reversible. Trabajo al variar la imanación de un sólido magnético. Resumen. Sistemas compuestos. Problemas.

BOLILLA N° 5.- CALOR Y PRIMER PRINCIPIO

Trabajo y calor. Trabajo adiabático. Función energía interna. Formulación matemática del primer principio. Concepto de calor. Forma diferencial del primer principio. Capacidad calorífica y su medida. Capacidad calorífica del agua. Caloría. Ecuaciones válidas para un sistema hidrostático. Flujo calorífico cuasi-estático. Foco calorífico. Conducción del calor. Conductividad térmica. Convección del calor. Radiación térmica. Cuerpo negro. Ley de Kirchoff. Calor radiado. Ley de Stefan - Boltzmann. Problemas.

BOLILLA N° 6.- GASES PERFECTOS

Ecuación de estado de un gas. Energía interna de un gas. Definición de un gas perfecto. Determinación experimental de capacidades caloríficas. Proceso adiabático cuasi-estático. Método de Clément y Désormes para la medida de ? Método de Rüchhardt. Velocidad de una onda longitudinal. Problemas.

BOLILLA N°7.- TEORIA CINETICA DE UN GAS PERFECTO

Punto de vista microscópico. Ecuación de estado de un gas perfecto. Distribución de las velocidades moleculares. Velocidades de Maxwell y temperatura. Equipartición de la energía. Problemas

BOLILLA N° 8.- MOTORES, FRIGORIFICOS Y SEGUNDO PRINCIPIO

Transformación de trabajo en calor, y viceversa. Motor Stirling. Máquina de vapor. Motor de combustión interna. Enunciado Kelvin-Planck. Del segundo principio. Frigorífico. Equivalencia de los enunciados de Kelvin-Planck y Clausius. Problemas.

BOLILLA Nº 9.- REVERSIBILIDAD Y ESCALA KELVIN DE TEMPERATURAS

Reversibilidad e irreversibilidad. Irreversibilidad mecánica externa. Irreversibilidad mecánica interna. Irreversibilidad térmica externa e interna. Irreversibilidad química. Condiciones necesarias para la reversibilidad. Existencia de superficies adiabáticas reversibles. Integrabilidad de dQ. Significado físico de ?. Escala Kelvin de temperaturas. Igualdad de las temperaturas de los gases perfectos y de la escala Kelvin. Problemas

BOLILLA N° 10.- ENTROPIA

Concepto de entropía. Entropía de un gas perfecto. Diagrama TS. Ciclo de Carnot. Entropía y reversibilidad. Entropía y estados inestables. Principio del aumento de entropía. Aplicaciones técnicas del principio de la entropía. Entropía y energía no utilizable. Entropía y desorden. Entropía y probabilidad termodinámica. Entropía y sentido. Entropía absoluta. Flujo y producción de entropía. Problemas.

BOLILLA N° 11.- SUSTANCIAS PURAS

Entalpía. Funciones de Helmholtz y de Gibbs. Teoremas matemáticos. Ecuaciones de Maxwell. Ecuaciones TdS. Ecuaciones de la energía. Ecuaciones de las capacidades caloríficas. Capacidad calorífica a presión constante. Coeficiente de dilatación y de comprensibilidad. Capacidad calorífica a volumen constante. Problemas.

BOLILLA N° 12.- CAMBIO DE FASE

Efecto Joule Kelvin. Licuación de gases por el efecto Joule Kelvin. Cambios de fase de primer orden . Ecuación de Clapeyron. Temperaturas negativas. Tercer principio de la Termodinámica. Problemas.

BOLILLA N° 13.- EQUILIBRIO QUIMICO

Ley de Dalton. Membrana semipermeable. Teorema de Gibbs. Entropía de una mezcla de gases perfectos inertes. Función de Gibbs de una mezcla de gases perfectos inertes. Equilibrio químico.

BOLILLA N°14.- APLICACIONES FISICAS-SEMINARIO

Pila de combustión. Dieléctrico en un condensador plano. Efecto piezoeléctrico. Fenómenos termoeléctricos. Corrientes simultáneas eléctricas y caloríficas en un conductor. Efecto de Scebeck y Peltier. Efecto Thomson y ecuaciones de Kelvin. Refrigeración termoeléctrica.

VII - Plan de Trabajos Prácticos

Los practicos de aula incluyen la resolución de los problemas del capitulo I del REIFF de FÍSICA TÉRMICA (tomo V serie Berkeley) y todos los problemas del capitulo 1 al 9, los primeros 19 del capitulo 11 y los tres primeros del capitulo 12 de el libro CALOR Y TERMODINAMICA de M. ZEMANSKY.

VIII - Regimen de Aprobación

- A) Promoción: Requiere la aprobación de cuatro parciales de problemas con promedio mínimo de siete (7) y nota mínima de seis (6). Asistencia del 80% a todas las clases (teóricas y prácticas), y finalmente un coloquio o examen integrador.
- B) Regularidad: Requiere la aprobación de cuatro parciales de problemas con promedio mínimo de seis (6) y nota mínima de cinco (5). Asistencia del 80% a todas las clases (teóricas y prácticas), y finalmente un coloquio o examen integrador. Deberá rendir examen final.

IX - Bibliografía Básica

- [1] . Calor y Termodinámica. Mark W. Zermansky
- [2] . Física Estadística. F. Reif
- [3] . Termodinámica Clásica. Russell y Adebiyi

X - Bibliografia Complementaria

[1] Treatise on Thermodymanics. M. Planck

XI - Resumen de Objetivos

Está destinado a alumnos de la Licenciatura en Física, que ya estudiaron en un primer nivel la mecánica, electricidad y magnetismo, ondas y óptica. Es el primer curso de FISICA TÉRMICA y se complementa con uno ulterior de MECÁNICA ESTADÍSTICA. Su contenido es la termodinámica clásica o sea la macrofísica térmica. Se sitúa en el segundo cuatrimestre del segundo año. Se pretende que los alumnos conozcan bien la teoría, sus conceptos fundamentales y aplicaciones. El nivel es el de textos clásicos en la materia, como es el caso del M Zemansky de Calor y Termodinámica, que es el elegido como columna vertebral del curso.

XII - Resumen del Programa

BOLILLA N°3.- SISTEMAS TERMODINAMICOS SENCILLOS

BOLILLA Nº 4.- TRABAJO

BOLILLA N° 5 CALOR Y PRIME	R PRINCIPIO	
BOLILLA N° 6 GASES PERFECT	os	
BOLILLA N°7 TEORIA CINETICA	A DE UN GAS PERFECTO	
BOLILLA N° 8 MOTORES, FRIGO	ORIFICOS Y SEGUNDO PRINCIPIO	
BOLILLA N° 9 REVERSIBILIDAI	O Y ESCALA KELVIN DE TEMPERATURAS	
BOLILLA N° 10 ENTROPIA		
BOLILLA N° 11 SUSTANCIAS PURAS		
BOLILLA N° 12 CAMBIO DE FASE		
BOLILLA N° 13 EQUILIBRIO QU	TIMICO	
BOLILLA N°14 APLICACIONES	FISICAS	
XIII - Imprevistos		
XIV - Otros		
ri rva	CIÓN y APROBACIÓN DE ESTE PROGRAMA	
ELEVA	Profesor Responsable	
F'	Trongor Responsable	
Firma:		

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
Profesor Responsable		
Firma:		
Aclaración:		
Fecha:		