

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias de la Salud

Departamento: Ciencias de la Nutrición Area: Area 3 Formación Básica

Area: Area 3 Formacion

(Programa del año 2023)

I - Oferta Académica

Materia	Carrera	Plan Año	Período
		11/20	
BIOESTADÍSTICA APLICADA	LIC. EN NUTRICIÓN	09 2023	2° cuatrimestre
		C.D	

II - Equipo Docente

Docente	Función	Cargo	Dedicación
DEVIA, CRISTINA MABEL	Prof. Responsable	P.Adj Exc	40 Hs
ARTEAGA, ALEJANDRA JOSEFINA	Auxiliar de Práctico	A.1ra Simp	10 Hs
PONCE, IVANA TAMARA	Auxiliar de Práctico	JTP Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
5 Hs	2 Hs	3 Hs	Hs	5 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	2° Cuatrimestre

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
07/08/2023	17/11/2023	15	70	

IV - Fundamentación

Dado que las ciencias relacionadas con la Salud son ciencias principalmente experimentales, se hace indispensable un conocimiento básico de Estadística que sirva de guía para el manejo de datos. La Bioestadística es una rama de la estadística que ha sido desarrollada para resolver problemas que se plantean en el análisis, manejo e interpretación de datos biológicos y nutricionales, por lo tanto es una herramienta muy beneficiosa a la hora de interpretar, analizar y marcar diferencias entre fenómenos simples y complejos presentes en los procesos asociados a las ciencias de la salud.

V - Objetivos / Resultados de Aprendizaje

^{*}Fomentar e incentivar al alumno en la aplicación de la Estadística a las ciencias de la salud.

^{*}Capacitar al alumno para definir y delimitar el objeto de estudio, formular preguntas concretas y obtener datos mediante adecuados muestreos y diseños experimentales.

^{*}Aprender a tomar decisiones relacionadas a situaciones de carácter biológico en forma autónoma y objetiva, con la ayuda de métodos estadísticos y programas de computación adecuados en función de los resultados obtenidos.

^{*}Obtener conclusiones a partir del análisis objetivo de los datos analizados y determinar el grado de confiabilidad de las mismas

^{*}Lograr la comprensión y fundamentos de los diferentes métodos para el análisis estadístico como herramienta para el

VI - Contenidos

Unidad 1: Introducción a los términos Estadísticos Básicos. Variable aleatoria. Clasificación. Concepto de población y muestra . Tipos de datos: cualitativos y cuantitativos. Clasificación de las variables: continuas y discontínuas. Nociones básicas de estadística descriptiva e inferencial.

Unidad 2: Estadística descriptiva. Proceso de muestreo. Nociones de probabilidad. Función de distribución. Parámetros muestrales y poblacionales. Medidas de tendencia central: media, mediana, modo, cuantiles, percentiles. Medidas de dispersión: desviación standard o típica, varianza, coeficientes de variación, rango, distancia intercuartil. Cálculo de los parámetros mediante el uso de formulas y calculadora. Asimetría. Curtosis.

Unidad 3: Estadística Descriptiva. Representaciones gráficas. Variables cualitativas: Gráficos circulares, de barras y pictogramas. Variables cuantitativas: histogramas, diagramas de tallo y hoja. Diagramas de caja y líneas (box-plots). Usos inadecuados de las representaciones gráficas.

Unidad 4: Estadística Inferencial: Muestra y población. Proceso de Inferencia estadística. Hipótesis nula e Hipótesis alternativa. Tipos de errores: tipo I, alfa o p y tipo II o beta. Interpretación de los errores. Interpretación de los valores de p. Estadística Paramétrica y Distribución Libre.

Unidad 5: Estadística Inferencial: Análisis de frecuencia. Tablas de contingencia. Test No paramétrico Chi-cuadrado. Comparaciones de frecuencias observadas con frecuencias teóricas. Comparaciones de frecuencias observadas en distintas condiciones.

Unidad 6: Estadística Inferencial: Distribución Normal. Estadística Paramétrica. Estadístico Z. Estadístico t. Estimaciones puntuales y por intervalo. Límites de aceptación para individuos. Límites de confianza de la media poblacional. Grado de confiabilidad de los resultados. Test de Normalidad de Kolmogorov-Smirnov.

Unidad 7: Estadística Inferencial: Análisis de diferencias de dos valores medios. Estadística Paramétrica: Test t de Student para casos apareados y no apareados. Test F de Fisher de homogeneidad de varianzas. Limitaciones.Detección y eliminación de datos atípicos. Transformaciones de datos. Estadística No Paramétrica: Test de Mann-Whitney y Wilcoxon.

Unidad 8: Estadística Inferencial: Comparación de más de dos valores medios. Estadística Paramétrica. Análisis de la varianza Diseño totalmente aleatorizado (de una Vía). Suma de cuadrados. Cuadrados medios. Comparaciones Ortogonales Múltiples. Comparaciones planificadas. Comparaciones a posteriori. Métodos de Tukey, Bonferroni, Dunnet, Scheffé. Limitaciones. Transformaciones de datos. Supuestos para su aplicación. Estadística No paramétrica. Método de Kruskall-Wallis. Test de Dunn.

Unidad 9: Estadística Inferencial: Comparación de más de dos valores medios. Estadística Paramétrica. Análisis de la varianza Diseño en bloque (de dos Vías) y su equivalente no paramétrico de Friedman y Prueba de Dunn. Comparaciones Ortogonales Múltiples. Comparaciones planificadas. Comparaciones a posteriori. Métodos de Tukey, Bonferroni, Dunnet, Scheffé. Limitaciones.

Unidad 10:Fundamentos básicos y uso de herramientas informáticas aplicadas al diseño experimental en las ciencias

de la salud. Interpretación de valores de p, a partir de resultados de distintos procesos de inferencia estadística, obtenidos de la aplicación de los softwares estadísticos. Tabla de equivalencia entre los métodos usados en Estadística Paramétrica y Estadística No Paramétrica.

VII - Plan de Trabajos Prácticos

Práctico 1: Normas básicas de Bioseguridad en el ambiente universitario. Variable aleatoria. Tipos de datos. Clasificación de las variables.

Práctico 2: Estadística descriptiva. Función de distribución. Cálculo de parámetros muestrales y estimación de parámetros poblacionales: parámetros de tendencia central y de dispersión.

Práctico 3: Representaciones gráficas. Gráficos circulares, de barras, pictogramas, histogramas, diagramas de tallo-hoja y de caja-líneas.

Práctico 4:Análisis de frecuencia. Test Chi-cuadrado. Comparaciones de frecuencias observadas con frecuencias teóricas. Comparaciones de frecuencias observadas en distintas condiciones.

Práctico 5: Distribución Normal. Estadístico Z. Estadístico t. Estimaciones puntuales y por intervalo. Limites de aceptación para individuos. Límites de confianza de la media poblacional. Grado de confiabilidad de los resultados.

Práctico 6: Análisis de diferencias de dos valores medios. Test t de Student para casos apareados y no apareados. Test F de Fisher de homogeneidad de varianzas. Detección y eliminación de datos atípicos.

Práctico 7: Análisis de la varianza Diseño totalmente aleatorizado. Suma de cuadrados. Cuadrados medios. Coeficientes para comparaciones Ortogonales Múltiples. Comparaciones planificadas. Comparaciones a posteriori.

Práctico 8: Análisis de la varianza Diseño en bloque. Suma de cuadrados. Cuadrados medios. Comparaciones Ortogonales Múltiples. Comparaciones planificadas. Comparaciones a posteriori.

Práctico 9: Utilización y aplicación de los softwares estadísticos GraphPad PRISM Versión 4.0, GraphPad InStat Versión 3.0. y Soft Statix versión 3.5.para el cálculo de todos los parámetros estadísticos previamente estudiados. Test paramétricos y de distribución libre. Interpretación de los resultados. Interpretación de los valores de p.

VIII - Regimen de Aprobación

Las clases teóricas se desarrollaran principalmente de manera presencial, y eventualmente virtual, según las reglamentaciones vigentes. La asistencia a las mismas no serán obligatorias.

La asistencia a los prácticos de Aula, sólo es requisito para alcanzar la regularidad o la promoción del curso, según lo estipulado por la ordenanza CS-66/21.

Alumnos Promocionales:

A)- El alumno deberá aprobar el cien por ciento (100%) de los exámenes parciales y un integrador, haciendo uso como máximo de una (1) recuperación. El alumno deberá aprobar con el 70% todos los exámenes parciales y el exámen integrador.

B)- La nota final será el promedio de las obtenidas en las distintas examinaciones.

Alumnos Regulares:

A)- El alumno deberá aprobar con un % numérico del 60 % los 2 exámenes parciales, cuentan para ello con 4 recuperaciones no acumulativas según la aplicación de la ordenanza Nº 32/14 CS. Por lo tanto pueden hacer uso de 2 recuperaciones para cada parcial, es decir que como máximo podrán recuperar 2 veces el mismo parcial.

*El curso no admite la modalidad de Examén en condición Libre.

IX - Bibliografía Básica

[1] * Mayorga L. S., Gimenez, I. T., Devia, C. M.; Bioestadística. Apunte teórico-Práctico de la asignatura Bioestadística.

UNSL

- [2] * " Bioestadística Aplicada" Apunte para la Licenciatura en Nutrición elaborado por la Lic. Cristina M. Devia bajo la revisión de la Lic. Isabel T. Gimenez.
- [3] * Manuales de Software GraphPad Instat y Prism.
- [4] * Manuales y documentación correspondientes a cada paquete de software utilizado en las distintas aplicaciones.

X - Bibliografia Complementaria

- [1] * BOOTH, ANDREW D.Numerical Methods. Butterwoorths.London. Edición 1996.
- [2] * NORMAN, STREINER. Bioestadística. 1ª Edición. Ed. Harcourt-Brace. 1998
- [3] *DAWSON-SAUNDERS, B;TRAPP, R.G. Bioestadística Médica. 2ª Edición, Ed. El Manual Moderno. 1998
- [4] * ARMITAGE, P.; BERRI, G. Métodos Estadísticos en la investigación científica. 3ª Edición; 1997- Harcourt-Brace.
- [5] *MARCELLO PAGANO KIMBERLEE GAUVREAU.Fundamentos de Bioestadistica. 2° Edicion, 2001. Ed. Thomson Learning.
- [6] * SOKAL, ROHLF. Introducción a la Bioestadística. Ed. REVERTE.
- [7] * SNEDECOR, COCHRAN. Métodos Estadísticos. Ed. CECSA
- [8] * LISON. Estadística Aplicada a la Biología. Experimental. Ed. Eudeba
- [9] * OSTLE. Estadística Aplicada. Ed. LIMUSA
- [10] * YOUNG, VELMAN. Introducción a la Estadística Aplicada a las Ciencias de la Conducta. Ed. TRILLAS
- [11] * EDWARDS. Statical Methods.Ed. HOLT, Rinchart and Winston INC.
- [12] * GUILFORD. Fundamental Statistic in Psichology and Education. Ed Mc Graw-Hill
- [13] * SIDNEY SIEGEL. Estadística No paramétrica. Ed. Trillas Mexico
- [14] * G.E. ALAN DENVER. Epidemiología y Administración de Servicios de Salud.O.P de la Salud. Organización Mundial de la Salud
- [15] * MOSCHETTI, S. FERRERO, G. PALACIO, M. RUIZ. Introducción a la estadística para las Ciencias de la Vida. UNRC. Julio 2003.

XI - Resumen de Objetivos

- * Lograr la comprensión de los fundamentos y los métodos clásicos del análisis estadístico para el desarrollo de la actividad profesional de la Licenciatura en Nutrición y sus aplicaciones en investigación científica.
- * Aprender a tomar decisiones relacionadas a problemas biológicos, con la ayuda de métodos estadísticos y programas de computación adecuados.

XII - Resumen del Programa

XIII - Imprevistos

Unidad 1: Variable aleatoria. Tipos de datos. Clasificación de las variables.

Unidad 2: Estadística descriptiva. Medidas de tendencia central y de dispersión.

Unidad 3: Representaciones gráficas.

Unidad 4: Inferencia Estadística. Tipos de errores.

Unidad 5: Análisis de frecuencia. Test Chi-cuadrado.

Unidad 6: Distribución Normal. Estadístico Z y t.

Unidad 7: Comparación de dos valores medios. Test de Student Apareado y No apareado. Datos atípicos.

Unidad 8: Análisis de la varianza Diseño totalmente aleatorizado. Comparaciones Múltiples.

Unidad 9: Análisis de la varianza Diseño en bloque. Comparaciones Múltiples.

Unidad 10:Utilización de softwares estadísticos.

XIV - Otros

Se aplica y dispone que la funciones y actividades de la UNSL, se lleven a cabo presencialmente y con la modalidad vigente al 20 de Marzo de 2020. Para lo cual se deben garantizar los elementos de protección e higiene dispuestos por los protocolos establecidos en ordenanza rectoral 4/21.