

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Electrónica

(Programa del año 2022) (Programa en trámite de aprobación) (Presentado el 19/08/2022 09:14:07)

Area: Electrónica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
AUTOMATIZACION INDUSTRIAL	ING.ELECT.O.S.D	13/08	2022	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
SPINA, MARCELO CARLOS	Prof. Responsable	P.Adj Semi	20 Hs
AMAYA, EDUARDO GASTON	Responsable de Práctico	A.1ra Exc	40 Hs
GALO, GERARDO OCTAVIO	Auxiliar de Práctico	A.2da Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
3 Hs	Hs	1 Hs	2 Hs	6 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2022	18/11/2022	15	90

IV - Fundamentación

En la industria, actualmente, la mayoría de los procesos se encuentran automatizados ó supervisados mediante API (Autómatas Programables Industriales) o PLC (Programmable Logic Controller) y en algunos casos por computadoras industriales.

El diseño y optimización de procesos automáticos que utilizan PLCs requiere de herramientas informáticas y de programación específicas para este tipo de equipos.

El presente curso plantea los fundamentos en base a los cuales funciona un autómata programable, los lenguajes normalmente utilizados y las técnicas de programación que suelen aplicarse.

También introduce los conceptos de redes de comunicación entre autómatas programables, como también de sistemas de supervisión por medio de computadoras.

Es de vital importancia para la formación de los profesionales poseer conocimientos sobre el diseño de Sistemas Automáticos, por lo cual se desarrollan en el curso actividades de formación teórico-prácticas orientadas a la solución de problemas reales y similares a los que el alumno encontrará en el ejercicio de su profesión.

V - Objetivos / Resultados de Aprendizaje

Capacitar al alumno para el diseño y análisis de procesos automatizados mediante PLCs.

Los conocimientos brindados durante el curso permitirán:

- Identificar variables lógicas que requieran ser controladas para el funcionamiento automático de una planta o proceso.
- Intervenir en la selección del soporte tecnológico más adecuado para implementar una automatización, seleccionando los elementos para realizar un automatismo.

- Diseñar controles combinacionales ó secuenciales usando metodologías como Grafcet y Gemma.
- Diseñar, analizar y optimizar programas de PLCs que automatizan procesos.
- Identificar los posibles niveles de automatización y conocer los estándares más usados en industria (SCADA, redes de comunicaciones, etc...)

VI - Contenidos

Tema 1:

Introducción a la automatización industrial. Su evolución. Elementos del sistema de control. Automatismos analógicos y digitales. Automatismos cableados y programables. El PLC. Arquitectura interna del Autómata. Clasificación. Configuraciones. Redundancia. Ciclo de funcionamiento del Autómata. Modos de Operación. Tiempos de ejecución y control en tiempo real.

Tema 2:

Interfaces de entrada / salida. Interfaces Específicas. Actuadores y pre actuadores. Actuadores neumáticos, hidráulicos y eléctricos utilizados en automatización.

Tema 3:

Elementos de Programación. Álgebra Booleana. Representaciones usadas en sistemas industriales. Identificación de variables y asignación de direcciones. Lenguajes de programación. Diagramas de contacto. Bloques funcionales. Listas de instrucciones. Estructuras de programación

Tema 4:

Diseño y programación de automatismos lógicos secuenciales. Grafcet. Programar el PLC partiendo de Diagrama Grafcet. Conversión de Grafcet a diagrama escalera. Análisis de puesta en marcha y parada. Guía Gemma.

Tema 5:

Elementos avanzados de automatización industrial. Niveles de automatización. Redes de comunicación Industriales. Redes AS-i. Redes MODBUS RTU y MODBUS TCP. Redes Profibus. Redes Ethernet. Módulos conversores de medios y de protocolos. Interfaces HMI (Human Machine Interface) para procesos industriales. Introducción a sistemas SCADA.

VII - Plan de Trabajos Prácticos

- 1) Introducción a LOGO! y LOGO SoftComfort
- 2) Introducción a CADe SIMU
- 3) Automatismos Combinacionales Parte I
- 4) Automatismos Combinacionales Parte II Uso de Contadores y Temporizadores
- 5) Manejo de Entradas Analógicas en LOGO!
- 6) Automatismos Secuenciales Parte I GRAFCET
- 7) Automatismos Secuenciales Parte II Implementación en Ladder
- 8) Familia S7-200 y Software Step7 MicroWin
- 9) Redes de Comunicación AS-i
- 10) Trabajos Finales de Materia

VIII - Regimen de Aprobación

Para obtener la regularidad en la materia y rendir el examen final como alumno regular será necesario:

- 1) Haber aprobado la totalidad de exámenes parciales, con una calificación porcentual no inferior al 65% para cada uno. Cada examen parcial posee dos recuperaciones.
- 2) Haber aprobado el 100% de las prácticas. Se podrán recuperar solo tres prácticas no aprobadas durante el cuatrimestre.
- 3) Haber aprobado el Proyecto Final de Materia o Proyecto integrador.
- 4) No se aceptan alumnos que no estén en condiciones regulares

Para obtener la promoción en la materia será necesario:

1) Haber aprobado la totalidad de exámenes parciales, con una calificación porcentual no menor al 75% para cada uno. Cada

examen parcial posee una recuperación para promocionar. La segunda recuperación solo permitirá regularizar la materia

- 2) Haber aprobado el 100% de las prácticas. Se podrán recuperar solo tres prácticas no aprobadas durante el cuatrimestre.
- 3) Haber aprobado el Proyecto Final de Materia o Proyecto integrador.

IX - Bibliografía Básica

- [1] Automatización de Procesos Industriales. Emilio García Moreno. Ed. Alfaomega. Año 2000
- [2] Autómatas Programables. Joseph Balcells y José Romeral. Ed. Marcombo. Año 1997
- [3] Manual SIEMENS LOGO
- [4] Manual SIEMENS S7-200
- [5] Manual SIEMENS Redes AS-i

X - Bibliografia Complementaria

- [1] Sistemas Digitales de Control de Procesos. Sergio Szklanny y Carlos Behrends. Ed. El Galpón. Año 2006
- [2] Automatización Industrial. Ramón Piedrafita Moreno. Ed. Alfaomega. Año 2001
- [3] Automatización. Problemas resueltos con Autómatas. Romera Pedro, Lorite Antonio, Montoro S. Ed. Paraninfo. Año 1994
- [4] Programable Logic Controllers, 3ra ed. W Boltom. Ed. Elsevier. Año 2003

XI - Resumen de Objetivos

- 1- Capacitar al alumno para desarrollar en el futuro actividades profesionales sencillas en el campo de la automatización industrial.
- 2- Plantear, diseñar y especificar correctamente estrategias de automatización.
- 3- Analizar y entender sistemas de automatización.
- 4- Diagnosticar y resolver problemas sencillos de sistemas automáticos.
- 5- Participar en la gestión y adquisición de elementos para automatizar procesos industriales.

XII - Resumen del Programa

Tema 1: Introducción a la automatización industrial.
--

- Tema 2: Interfaces de entrada / salida.
- Tema 3: Elementos de Programación.
- Tema 4: Diseño y programación de automatismos lógicos secuenciales. Grafcet.
- Tema 5: Elementos avanzados de automatización industrial. Niveles de automatización. Redes industriales. Interfaces HMI.

Sistemas SCADA.

XIII - Imprevistos

Dependiendo de la evolución de la situación de la pandemia por COVID-19 y de las medidas que implemente la Universidad Nacional de San Luis, los trabajos de laboratorio y las evaluaciones podrán ser modificados y reprogramados.

XIV - Otros	

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		