

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Mineria Area: Mineria

(Programa del año 2020) (Programa en trámite de aprobación) (Presentado el 22/02/2021 11:53:33)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
CONSTRUCCIONES	T.UNIV.O.VIALES	10/13	2020	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
MEDICI, MARIA ELIZABETH	Prof. Responsable	P.Adj Exc	40 Hs
CORTEZ, ALFREDO RAMON	Prof. Co-Responsable	P.Adj Simp	10 Hs
ESCUDERO ACUÑA, ALDANA DENISE	Auxiliar de Práctico	A.2da Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
90 Hs	50 Hs	40 Hs	Hs	7 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
22/09/2020	18/12/2020	13	90

IV - Fundamentación

Los TUs deberán conocer las características de los diversos tipos de materiales con que contará en su actividad profesional. Asimismo incorporarán conceptos simplificados de estructuras que permitan resolver estructuras sencillas que pueda tener durante su vida profesional, con el consecuente manejo de conocimiento de cálculo de solicitaciones y tensiones a las que pueden estar sometidas. Estos cálculos se realizarán mediante el estudio y planteo de teorías clásicas como por ejemplo la teoría de la elasticidad. Asimismo incorporarán conceptos simples de cálculo de Hormigón Armado y plantearán la resolución de elementos estructurales sencillos y muros de sostenimiento analizando las cargas actuantes.

V - Objetivos / Resultados de Aprendizaje

Que el alumno diferencie el comportamiento de los diversos materiales que encuentra a su paso.

Que sepa diferenciar lo que se puede llegar a resolver con la estática y cuándo, por qué y para qué incorporo la resistencia de materiales.

Que a partir del cálculo de solicitaciones el alumno sea capaz de determinar las tensiones internas de una pieza según sea la solicitación.

Que el alumno pueda dimensionar la pieza solicitada y la pueda cotejar con las tensiones admisibles según el material con que dicha pieza está construida. Para ello deberá conocer los diagramas de tensiones y deformaciones de cada material y cómo se comporta ante las diversas solicitaciones.

VI - Contenidos

- 1.1. Fuerzas. Componentes de una fuerza.
- 1.1.1. Sistemas de fuerzas colineales. Resultante del sistema.
- 1.1.2. Sistemas de fuerzas paralelas. Resultante del sistema.
- 1.1.3. Sistemas de fuerzas paralelas. Resultante del sistema.
- 1.2. Momento de una fuerza respecto a un punto. Definición del signo del momento.
- 1.3. Cupla. Característica de la cupla: el momento.

UNIDAD 2: VINCULOS

- 2.1. Grados de libertad.
- 2.2. Cuerpos libres y vinculados.
- 2.3. Chapa.
- 2.4. Vínculos. Definición.
- 2.4.1. Clasificación de vínculos: internos y externos.
- 2.4.2. Clasificación de vínculos de acuerdo con la cantidad de grados de libertad restringidos.
- 2.4.3. Materialización de los vínculos en la obra civil.
- 2.5. Clasificación de las estructuras de acuerdo a su vinculación con la tierra.

UNIDAD 3: EQUILIBRIO

- 3.1. Equilibrio de un sistema de fuerzas cualesquiera.
- 3.2. Ecuaciones de equilibrio.
- 3.3. Cálculo analítico de reacciones de vínculo en sistemas isostáticos e hiperestáticos.
- 3.4. Cálculo de reacciones de vínculos internos.

UNIDAD 4: INERCIA Y CENTRO DE GRAVEDAD

- 4.1. Momento de inercia. Definición.
- 4.2. Cálculo del momento de inercia de secciones planas. Uso de tablas.
- 4.3. Teorema de Steiner. Su aplicación en el cálculo de inercias de secciones compuestas usadas en la construcción.
- 4.4. Radio de giro. Definición. Forma de cálculo para secciones compuestas.
- 4.5. Centro de Gravedad. Definición. Definición del baricentro de una superficie.
- 4.6. Cálculo de coordenadas del baricentro de secciones compuestas usadas en la construcción.

UNIDAD 5: RESISTENCIA DE MATERIALES

- 5.1. Objetivos de la Resistencia de Materiales.
- 5.2. Hipótesis de Cálculo.
- 5.3. Definición de esfuerzos internos. Clasificación. Esfuerzo Normal. Esfuerzo de Corte. Esfuerzo de Flexión. Esfuerzo de Torsión
- 5.4. Concepto de Tensión. Tensión Normal y Tensión Tangencial.
- 5.5. Definición de coeficiente de seguridad. Tensiones admisibles.
- 5.6. Ley de Hooke. Módulos de Elasticidad. Deformación específica. Coeficiente de Poisson. Principio de Saint Venant.

UNIDAD 6: ESFUERZO NORMAL

- 6.1. Ensayo de tracción de los aceros.
- 6.1.1. Diagrama Tensión-Deformación de un acero dúctil.
- 6.1.2. Definición de los límites característicos.
- 6.2. Dimensionamiento de elementos sometidos a tracción o compresión (sin pandeo).
- 6.2.1. Cálculo de tensiones y deformaciones en elementos solicitados a compresión o tracción.

UNIDAD 7: CORTE SIMPLE

- 7.1. Tensiones de rotura y admisibles. Teorema de reciprocidad de tensiones.
- 7.2. Deformaciones originadas por las tensiones tangenciales. Diagramas de Corte.
- 7.3. Módulo de Elasticidad Transversal.
- 7.4. Dimensionamiento de elementos sometidos a corte simple y corte por variación de momento flector. Deformación producida por el esfuerzo de corte.
- 7.4.1. Aplicaciones: Dimensionamiento de Remaches y Bulones.

UNIDAD 8: ESFUERZO DE FLEXIÓN.

- 8.1. Flexión Pura. Definición de eje neutro. Su posición y dirección. Definición de Módulo Resistente.
- 8.2. Determinación de las tensiones debidas a flexión pura. Deformación de la viga.
- 8.3. Diagramas de flexión. Verificación de la tensión de corte.
- 8.4. Dimensionamiento de elementos sometidos a flexión.
- 8.5. Relación entre el momento máximo y el esfuerzo de corte.

UNIDAD 9: TENSIONES DEBIDO A TORSIÓN.

- 9.1. Torsión pura. Vigas de sección circular. Tensiones. Condición de resistencia. El ángulo de torsión en secciones circulares. Sección circular hueca. Ejes de transmisión.
- 9.2. Teorema de reciprocidad de tensiones.
- 9.3. Determinación de tensiones debidas a Torsión a partir del Momento Torsor.
- 9.4. Factor de Torsión.

UNIDAD 10: SOLICITACIONES COMPUESTAS.

- 10.1. Casos posibles. Sistema plano de tensiones. Tensiones Principales.
- 10.2. Círculo de Mohr. Condición de resistencia.
- 10.3. Flexión Torsión. Flexión Corte. Esfuerzo Normal Torsión.

UNIDAD 11: HORMIGÓN SIMPLE.

11.1. Propiedades de los aglomerantes, en general, y del cemento en especial. Proceso de fraguado y endurecimiento.

Componentes del hormigón: cemento y sus diferentes tipos, agua, áridos finos y gruesos. Propiedades y condiciones para su utilización.

11.2. Dosificación de Hormigones.

UNIDAD 12. MUROS DE SOSTENIMIENTO.

- 12.1. Nociones sobre la teoría de empuje de tierras. Cálculo de las presiones y del empuje. Diferentes teorías de cálculo.
- 12.2. Muros de gravedad: dimensionamiento. Nociones de Muros de Hormigón Armado.
- 12.3. Tierra Armada. Mecanismo de resistencia y cálculo.

VII - Plan de Trabajos Prácticos

- T.P.No 1: Cálculo de reacciones de vínculo. Sistemas Isostáticos.
- T.P.No 2: Cálculo de Esfuerzos de Corte, Esfuerzo Normal y momento Flector en Vigas Isostáticas.
- T.P.No 3: Cálculo de Momentos Estáticos y Momentos de Inercia.
- T.P.No 4: Cálculo y Dimensionamiento de piezas sometidas a flexión, corte, esfuerzos normales (tracción y/o compresión) y momento torsor.
- T.P.No 5: Dosificación de Hormigones
- T.P.No 6: Cálculo de muros de sostenimiento y tierra armada.

VIII - Regimen de Aprobación

- IX Bibliografía Básica
- X Bibliografia Complementaria
- [1] Problemas de Mecánica General y Aplicada. Francis W. Sears y Mark W Zemannsky.
- XI Resumen de Objetivos

Apuntar a tener un conocimiento integral y fluido de los diversos materiales a emplear en la vida profesional

- T.P.No 1: Cálculo de reacciones de vínculo. Sistemas Isostáticos.
- T.P.No 2: Cálculo de Esfuerzos de Corte, Esfuerzo Normal y momento Flector en Vigas Isostáticas.
- T.P.No 3: Cálculo de Momentos Estáticos y Momentos de Inercia.
- T.P.No 4: Cálculo y Dimensionamiento de piezas sometidas a flexión, corte, esfuerzos normales (tracción y/o compresión) y momento torsor.
- T.P.No 5: Dosificación de Hormigones
- T.P.No6: Cálculo de muros de sostenimiento y tierra armada.

Se regulariza la materia con:

80% de asistencia a clases teóricas.

100% de asistencia a dictado de prácticos.

100% de aprobación de parciales. Los parciales se aprueban con 7 (siete). Se aprueba con examen final con calificación mínima de 4 (cuatro).

IX - Bibliografía Básica

- [1] Resistencia de Materiales. Timoshenko 5a Edición 2006.
- [2] Mecánica de Materiales. F. P. Beer, E. Russell Johnston Jr., John T. Dewolf. 4a Edición 2007.
- [3] Estabilidad Segundo Curso. Enrique D. Fliess. Editorial Kapeluzs. Edición 1985.
- [4] Ciencia de la Construcción I. Odone Belluzzi. Editorial-. Edición 1977.

X - Bibliografia Complementaria

[1] Problemas de Mecánica General y Aplicada. Francis W. Sears y Mark W Zemannsky.

XI - Resumen de Objetivos

Apuntar a tener un conocimiento integral y fluido de los diversos materiales a emplear en la vida profesional

XII - Resumen del Programa

UNIDAD 1: ESTATICA UNIDAD 2: VINCULOS UNIDAD 3: EQUILIBRIO

UNIDAD 4: INERCIA Y CENTRO DE GRAVEDAD UNIDAD 5: RESISTENCIA DE MATERIALES

UNIDAD 6: ESFUERZO NORMAL

UNIDAD 7: CORTE SIMPLE

UNIDAD 8: ESFUERZO DE FLEXIÓN.

UNIDAD 9: TENSIONES DEBIDO A TORSIÓN. UNIDAD 10: SOLICITACIONES COMPUESTAS. UNIDAD 11: HORMIGÓN y HORMIGÒN ARMADO. UNIDAD 12. MUROS DE SOSTENIMIENTO.

XIII - Imprevistos

Se planteará una solución acorde al tipo de imprevisto en el momento y circunstancia que así lo requiera. Asimismo, El DECNU (520/2020 de distanciamiento social, obligatorio y preventivo, establecido por el Gobierno Nacional y la necesidad de reajustar el Calendario Académico de la Universidad Nacional de San Luis, en lo referente al Segundo Cuatrimestre 2020, el Consejo Superior en su sesión del día 01/09/202 estableció en el Artículo 1 de la Resolución No68/2020, que el Segundo Cuatrimestre sea de 13 semanas. A los efectos de que se impartan todos los contenidos y se respete el crédito horario establecido en el Plan de estudios de la carrera para esta asignatura, se establece que se dé cómo máximo 7hs por semana distribuidas en teorías, prácticos de aula, laboratorios, trabajos tutoriales, consultas, hasta completar las 90hs. La metodología de la asignatura tiene las siguientes características: (El dictado de las clases teóricas es mediante videoconferencias en plataformas tipo zoom (o googlemeet, hanghout, skype, entre otras) apoyadas con TIC. (Los prácticos se realizan individualmente, con al menos 1 consulta por semana). Deberán realizar un informe personal por cada práctico.

XIV - Otros		

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA			
	Profesor Responsable		
Firma:			
Aclaración:			
Fecha:			