

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Electrónica

(Programa del año 2019) (Programa en trámite de aprobación) (Presentado el 16/12/2019 10:02:06)

Area: Electrónica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
AUTOMATIZACION INDUSTRIAL	ING.ELECT.O.S.D	13/08	2019	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
SPINA, MARCELO CARLOS	Prof. Co-Responsable	P.Adj Semi	20 Hs
AMAYA, EDUARDO GASTON	Auxiliar de Práctico	A.1ra Simp	10 Hs
GALO, GERARDO OCTAVIO	Auxiliar de Práctico	A.2da Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP,		Práct. de lab/ camp/ Resid/ PIP, etc.	Total	
90 Hs	40 Hs	20 Hs	30 Hs	6 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
05/08/2019	16/11/2019	15	90

IV - Fundamentación

En la industria, actualmente, muchos procesos se encuentran automatizados ó supervisados mediante PLCs y computadoras. El diseño, uso y reparación de procesos automáticos que utilizan PLCs requiere de herramientas informáticas y de programación propias de este tipo de equipos.

El presente curso enseña los fundamentos sobre el autómata programable, lenguajes y técnicas de programación. También introduce al conocimiento de redes entre autómatas programables como así también sistemas de supervisión con PC.

V - Objetivos / Resultados de Aprendizaje

La presente materia tiene como objetivo capacitar al alumno para el diseño y análisis de procesos automatizados mediante PLCs.

Los conocimientos brindados permitirán:

- Identificar variables lógicas que requieren ser controladas para el funcionamiento automático de una planta.
- Seleccionar los elementos para realizar un automatismo.
- Diseñar controles combinacionales ó secuenciales usando metodologías como Grafcet y Gemma.
- Realizar ó analizar programas de PLCs.
- Identificar los posibles niveles de automatización y conocer los estándares más usados en industria (SCADA, redes de comunicaciones, etc...)

VI - Contenidos

analógicos y digitales. Automatismos cableados y programables. El PLC. Arquitectura interna del Autómata. Clasificación. Configuraciones. Redundancia. Ciclo de funcionamiento del Autómata. Modos de Operación. Tiempos de ejecución y control en tiempo real.

Tema 2: Interfaces de entrada / salida. Interfaces Específicas. Actuadores y pre actuadores. Actuadores neumáticos, hidráulico y eléctricos para la automatización.

Tema 3: Elementos de Programación. Álgebra Booleana. Representaciones usadas en sistemas industriales. Identificación de variables y asignación de direcciones. Lenguajes de programación. Diagramas de contacto. Bloques funcionales. Listas de instrucciones. Estructuras de programación

Tema 4: Diseño y programación de automatismos lógicos secuenciales. Grafcet. Programar el PLC partiendo de Diagrama Grafcet. Conversión de Grafcet a diagrama escalera. Análisis de puesta en marcha y parada. Guía Gemma.

Tema 5: Elementos avanzados de automatización industrial. Niveles de automatización. Redes de comunicación Industrial. Redes ASi Redes Profibus. Introducción a sistemas SCADA.

VII - Plan de Trabajos Prácticos

- 1) Introducción a LOGO primera parte, programación
- 2) Introducción a LOGO segunda parte, software de programación
- 3) Automatismos Combinacionales . Uso de Contadores y Temporizadores
- 4) Automatismos. Uso de entradas analógicas
- 4) Automatismos Secuenciales I
- 5) Automatismos Secuenciales II
- 6) Software para S7 200: Step 7 micro Win
- 8) Redes de comunicación con PLC (Asi) y HMI
- 9) Trabajo Final

VIII - Regimen de Aprobación

Para obtener la regularidad en la materia y rendir el examen final como alumno regular será necesario:

- 1) Haber aprobado la totalidad de exámenes parciales, con una calificación porcentual no inferior al 65% para cada uno. Cada examen parcial posee dos recuperaciones.
- 2) Haber aprobado el 100% de las prácticas. Se podrán recuperar solo tres prácticas no aprobadas durante el cuatrimestre.
- 3) Haber aprobado el Proyecto integrador.
- 4) No se aceptan alumnos que no estén en condiciones regulares

Para obtener la promoción en la materia será necesario:

- 1) Haber aprobado la totalidad de exámenes parciales, con una calificación porcentual no menor al 75% para cada uno. Cada examen parcial posee una recuperación para promocionar. La segunda recuperación solo permitirá regularizar la materia
- 2) Haber aprobado el 100% de las prácticas. Se podrán recuperar solo tres prácticas no aprobadas durante el cuatrimestre.
- 3) Haber aprobado el Proyecto integrador.

IX - Bibliografía Básica

- [1] Automatización de Procesos Industriales. Emilio García Moreno. Ed. Alfaomega. Año 2000
- [2] Autómatas Programables. Joseph Balcells y José Romeral. Ed. Marcombo. Año 1997
- [3] Tutorial SIEMENS LOGO
- [4] Tutorial SIEMENS S7-200

X - Bibliografia Complementaria

- [1] Sistemas Digitales de Control de Procesos. Sergio Szklanny y Carlos Behrends. Ed. El Galpón. Año 2006
- [2] Automatización Industrial. Ramón Piedrafita Moreno. Ed. Alfaomega. Año 2001
- [3] Automatización. Problemas resueltos con Autómatas. Romera Pedro, Lorite Antonio, Montoro S. Ed. Paraninfo. Año

[4] 1994

[5] Programable Logic Controllers, 3ra ed. W Boltom. Ed. Elsevier. Año 2003

XI - Resumen de Objetivos

- 1- Capacitar al alumno para desarrollar en el futuro una serie de actividades profesionales sencillas en el campo de la automatización industrial.
- 2- Plantear, diseñar y especificar correctamente estrategias de automatización
- 3- Analizar y entender sistemas de automatización.
- 4- Diagnosticar y resolver problemas sencillos de sistemas automáticos.
- 5- Participar en la gestión y adquisición de elementos para automatizar procesos industriales.

XII - Resumen del Programa

Tema 1: Introducción a la automatización industrial.	
Tema 2: Interfaces de entrada / salida.	

Tema 3: Elementos de Programación.

Tema 4: Diseño y programación de automatismos lógicos secuenciales. Grafcet.

Tema 5: Elementos avanzados de automatización industrial. Niveles de automatización y redes AS-i

XIII - Imprevistos		
XIV - Otros		

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		