

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Automatización

(Programa del año 2019) (Programa en trámite de aprobación) (Presentado el 23/10/2019 13:26:28)

I - Oferta Académica

Materia	Carrera	Plan A	ño Período
Robótica Industrial II		022/1	·
	ING. MECATRÓNICA	2-Mo	019 1° cuatrimestre
		d21/1	1° cuatrimestre
		5	

II - Equipo Docente

Docente	Función	Cargo	Dedicación
AVILA, LUIS OMAR	Prof. Responsable	P.Adj Simp	10 Hs
PINNA GONZALEZ, LUIS FEDERICO	Auxiliar de Práctico	A.2da Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
4 Hs	2 Hs	2 Hs	1 Hs	5 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
13/03/2019	21/06/2019	15	75

IV - Fundamentación

Robótica Industrial 2 es una asignatura de la carrera de Ingeniería Mecatrónica ubicada en el área del espacio curricular de las denominadas tecnologías aplicadas. Es la base para el diseño, desarrollo y control de robots antropomorfos y móviles. Su inclusión en la currícula de la carrera contribuye a la formación integral del alumno de forma tal que adquiera los contenidos necesarios para que en su futuro profesional, como Ingeniero en Mecatrónica se comporte con sentido crítico e innovador en la problemática particular de los sistemas robóticos y presente respuestas originales con alternativas eficientes de solución en la toma de decisiones profesionales.

V - Objetivos / Resultados de Aprendizaje

El alumno deberá ser capaz de analizar los fundamentos teóricos, técnicas y herramientas utilizadas en el análisis de velocidades, fuerzas y pares aplicados, modelado dinámico y control de robots manipuladores y el diseño y control de robots móviles. Deberá además poder evaluar criterios y métodos para la proyección de soluciones robotizadas. Plantear y resolver problemas de equilibrio de fuerzas en sistemas robotizados. Aplicar ecuaciones de modelado dinámico de Newton-Euler y Lagrange-Euler. Determinar posiciones trayectorias y desarrollar algoritmos de control de movimiento de robots manipuladores y móviles. Desarrollar la formación académica necesaria para conocer las etapas de análisis, diseño e

VI - Contenidos

Unidad Temática Nº 1. Introducción a los sistemas robóticos

El origen de los sistemas robóticos

Definiciones

Sistemas robóticos

Movimientos en el robot

Descripciones espaciales

Transformada homogénea Unidad

Temática Nº 2. Velocidades y fuerzas estáticas

Posiciones y orientaciones en el tiempo

Análisis de velocidad de cuerpos rígidos

Movimiento de los vínculos de un robot

Propagación de la velocidad

Jacobianos

Fuerzas estáticas Unidad

Temática Nº 3. Modelo dinámico de robots manipuladores

Aceleración de un cuerpo rígido

Distribución de masas en los eslabones

Modelo dinámico directo e inverso

Formulación iterativa de Newton-Euler

Formulación de Lagrange

Ecuaciones de movimiento

Ecuación en el espacio de estado

Algoritmos numéricos

Unidad Temática Nº 4. Control de robots manipuladores

Conceptos de control

Control de posición

Control de trayectoria

Control por interacción

Unidad Temática Nº 5. Robótica móvil

Configuraciones de robots móviles

Tipos de ruedas y restricciones

Análisis cinemático y dinámico

Control de robots móviles

Sensores Unidad

Temática Nº 6. Aplicaciones de la robótica

Robots complejos, flexibles y paralelos

Robots andadores y antropomórficos

Robots submarinos, aéreos y espaciales

Aplicaciones en industria y servicio

VII - Plan de Trabajos Prácticos

Resolución de problemas: Se entregará una guía de trabajos prácticos con ejercicios correspondientes a los temas desarrollados en las clases teóricas.

Los temas a desarrollar serán:

- 1- Revisión cinemática directa e inversa de un robot manipulador
- 2- Análisis de fuerzas en el robot
- 3- Modelado dinámico
- 4- Control de manipuladores
- 5- Robótica Móvil
- 6- Presentación oral: Aplicaciones de la robótica

Trabajo de laboratorio: Se realizarán trabajos de laboratorio relacionado al control y calibración de posición de un robot antropomorfo de tipo industrial.

VIII - Regimen de Aprobación

Metodología de dictado y aprobación de la asignatura: Clases teóricas, prácticas y de laboratorio.

Régimen de regularidad:

Asistencia al 60 % de las clases teóricas.

Asistencia al 60 % de las clases prácticas de laboratorio.

Aprobación del 100% de los trabajos prácticos de aula.

Aprobación con 60% los exámenes parciales.

Condiciones para promocionar el curso:

Asistencia al 80 % de las clases teóricas.

Asistencia al 80 % de las clases prácticas de laboratorio.

Aprobación del 100% de los trabajos prácticos de aula.

Aprobación con 70% los exámenes parciales.

Aprobación de un trabajo integrador de laboratorio.

Nota: Cada parcial cuenta con su respectivo recuperatorio y al final se realizará una segunda recuperación.

Examen final:

El examen final es teórico-práctico según el contenido establecido en el programa de la asignatura. Para el examen final, el alumno debe presentarse con la carpeta de trabajos prácticos completa y aprobada, incluyendo además, el informe final de las prácticas de laboratorio. Se evalúa la totalidad de los temas indicados en el programa

IX - Bibliografía Básica

- [1] [1] J. Craig. Robótica. Pearson. 2006
- [2] [2] F. Reyes Cortes. Robótica: control de robots manipuladores. Alfaomega. 2011
- [3] [3] R. Kelly y V. Santibañez. Control de movimientos de robots manipuladores. Pearson. 2003
- [4] [4] A. Hossain, R. García-Martinez y L. Olivera. Robótica de navegadores. 2014
- [5] [5] A. Barrientos et al. Fundamentos de robótica. McGraw Hill. 2007

X - Bibliografia Complementaria

- [1] [1] Ollero Baturone. Robótica: Manipuladores y robot móviles. Alfaomega. 2001
- [2] [2] J. Angulo et al. Introducción a la robótica. Paraninfo. 2005
- [3] [3] W. Bolton. Mecatrónica: sistemas de control electrónico en la ingeniería mecánica y eléctrica. Alfaomega, 2006
- [4] [4] Fernando Reyes Cortes. Matlab aplicado a robótica y mecatrónica. Alfaomega. 2012

XI - Resumen de Objetivos

- 1- El alumno deberá ser capaz de evaluar los fundamentos, técnicas y herramientas aplicadas en el análisis dinámico, diseño y manipulación de robots industriales y móviles.
- 2- Plantear y resolver problemas de diseño y control dinámico de sistemas robotizados.
- 3- Diseñar soluciones de aplicación industrial en las instalaciones automatizadas con sistemas robotizados.

XII - Resumen del Programa

Unidad Temática Nº 1. Introducción
Unidad Temática Nº 2. Velocidades y fuerzas estáticas
Unidad Temática Nº 3. Modelo dinámico de robots manipuladores
Unidad Temática Nº 4. Control de robots manipuladores

Unidad Temática Nº 5. Robótica móvil

Unidad Temática Nº 6. Aplicaciones de la robótica

XIII - Imprevistos

XIV - Otros

Fecha:

Para el caso de medidas de fuerza que alteren sustancialmente el dictado de la asignatura, se implementarán sistemas de autoestudio y consultas mediante la utilización de plataformas on-line.

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
1	1	