

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Geologia Area: Geologia

(Programa del año 2019) (Programa en trámite de aprobación) (Presentado el 20/08/2019 17:03:05)

I - Oferta Académica

Materia	Carrera		Año	Período
TELEDETECCION I	TEC.UNIV.GEOINF	09/13	2019	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
HOUSPANOSSIAN, JAVIER	Prof. Co-Responsable	P.Adj Exc	40 Hs
MUÑOZ, BRIAN LUCAS	Responsable de Práctico	JTP Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
3 Hs	Hs	3 Hs	Hs	6 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
05/08/2019	16/11/2019	15	90

IV - Fundamentación

La TELEDETECCIÓN se define como la adquisición y procesamiento de la información proveniente de objetos con los cuales no se establece un contacto físico real, para lo que se utilizan SENSORES REMOTOS, que pueden estar a bordo de plataformas satelitales, aéreas o terrestres. Este paquete tecnológico incluye el uso de Fotografías aéreas (verticales y oblicuas), Imágenes satelitales (del espectro óptico, termal y radar), Imágenes altimétricas (de sensores Laser o radar), Información radiométrica obtenida con sensores terrestres, etc. El Plan vigente de la carrera TECNICATURA UNIVERSITARIA EN GEOINFORMÁTICA de la UNIVERSIDAD NACIONAL DE SAN LUIS, incluye desde el año 2008 esta asignatura, que tiene como objetivos fundamentales que los alumnos obtengan conocimientos sobre las bases físicas de la Teledetección, de los procesos involucrados en la adquisición de la información, de los sistemas sensores mas usados y de avanzada, los programas que permiten procesar la información digital y las posibilidades de esta tecnología para adquirir información precisa sobre los recursos naturales y el medio ambiente. Esta asignatura se dicta en el segundo cuatrimestre del primer año de la carrera articulando su contenido con los conocimientos informáticos de materias anteriores y preparando a los alumnos para usar las imágenes como fuente de datos ambientales para los Sistemas de Información Geográfica usados en las asignaturas posteriores.

V - Objetivos / Resultados de Aprendizaje

OBJETIVOS

- Obtener las bases teórico prácticas de los sistemas de Teledetección, y un conocimiento detallado de los procesos físicos que involucran su estudio,
- Conocer los fundamentos físicos de la interacción de la radiación electromagnética con los materiales constituyentes de las distintas cubiertas terrestres,

- Capacitar al alumno en el manejo de software específico para el uso de imágenes de sensores remotos y su procesamiento digital,
- Conocer las características de los sensores y satélites disponibles para seleccionar las imágenes más adecuadas a los fines de estudios específicos,
- Desarrollar habilidad para procesar imágenes de satélites y aplicarla para resolver problemas en las Ciencias Geológicas, Ambientales y de desarrollo tecnológico,
- Adquirir las nociones básicas de clasificación y segmentación digital de imágenes para generar cartografía temática a partir de imágenes obtenidas por satélites.
- Desarrollar habilidades para relevar un sector de interés utilizando diversas herramientas

VI - Contenidos

UNIDAD I: Teledetección o percepción remota. Definición. Nociones Introductorias. Evolución histórica de la teledetección. Elementos de un proceso de teledetección. Las ventajas de la observación espacial. Aspectos clave en teledetección. La carrera espacial internacional. Aplicaciones de los satélites en las ciencias de la Tierra.

UNIDAD II: Bases físicas de la teledetección. Naturaleza de la radiación. La Energía Electromagnética (EEM). Generadores de EEM. Leyes de la radiación EEM. Ley de Stefan – Boltzmann. Ley de Plank. Ley de Wien. Teorías sobre propagación. Emisividad de cuerpos negros y reales. Distribución de radiación solar y terrestre. Espectro luminoso y luminoso visible. Otras bandas del Espectro Electromagnético. Interacción entre la radiación y la superficie. Propiedades de la superficie de un cuerpo. Reflexión, transmisión y absorción de la luz. Reflectancia, transmitancia y absorbancia. Firmas espectrales. Modelos de sensado remoto. Interacción entre la radiación y los objetos. Reflectancia, transmitancia y absorbancia. Fórmulas. Características espectrales de los suelos. Influencia de la composición sobre la reflectancia espectral. Características de la radiación electromagnética en el espectro óptico. Comportamiento espectral de la vegetación, hojas, pigmentos, en el espectro óptico. Influencia del tipo fisonómico-estructural de la cobertura vegetal, sobre la reflectancia del pixel. El agua en el espectro óptico. Bibliotecas espectrales.

UNIDAD III: Sistemas satelitales. Plataformas de teledetección. Sensores Pasivos y Activos. Características. Orbitas. La formación de la imagen multiespectral. Resolución: radiométrica, temporal, espacial y angular de imágenes. Bases para la interpretación de imágenes de sensores remotos. Limitaciones para el empleo de la teledetección. Información que brindan las imágenes. Principales programas satelitales de monitoreo de la tierra. Plataformas y Sensores Landsat MSS, TM, ETM+ y OLI. SENTINEL-2, SPOT, SPOT Vegetation, MODIS, ASTER, NOAA AVHRR yMODIS. CBERS. Otras Plataformas: AVIRIS, IKONOS, GeoEyes, ERS, ENVISAT, RADARSAT, SENTINEL-1. Utilización de cada uno en las Ciencias de la Tierra y Geología. Ejemplos. El Plan Espacial Argentino. El rol de la Comisión Nacional de Actividades Espaciales. Historia. Funcionamiento. El proyecto SAC. Historia y otros proyectos. Satélite SAC C: sensores, resoluciones, usos, canales.

UNIDAD IV: Las imágenes digitales. Diferencias imágenes analógicas y digitales. Datos digitales. Formatos de grabación y archivos más comunes. Combinaciones de bandas: imágenes multi-espectrales. Realces y mejoras visuales. Ajuste del contraste. Combinaciones de Bandas espectrales. Composiciones en color, Falso color compuesto y Pseudocolor.

UNIDAD V: Interpretación visual de imágenes color. Composiciones RGB específicas para cada análisis. Criterios para la interpretación visual: color, tono y textura. Formas y tamaños. Formas estructurales. Formas naturales. Contexto espacial. Período de adquisición. Elementos del análisis visual. Efecto de la resolución espacial en el análisis visual. Efecto de la resolución espectral en el análisis visual. Identificación de rasgos geológicos sobre la imagen. Interpretación de Mapeo de los recursos naturales, geología, vegetación, suelos, uso y ocupación, ambiente urbano.

UNIDAD VI: Pre-procesamiento I. Pre-procesamiento radiométrico. Calculo de radiancias de cuantas digitales. Estimación de la reflectancia a tope de la atmósfera. Interacción de la EEM con la atmósfera. Constituyentes atmosféricos. Dispersión. Absorción molecular refracción atmosférica. Fenómenos de Rayleigh, Mie y selectivo. Correcciones. Concepto de ventanas y barreras atmosféricas. Relación entre ventanas y distintos medios de captación. Ejemplos.

Pre-procesamiento II. Correcciones geométricas por remuestreo. Errores geométricos sistemáticos y no sistemáticos. Delimitación de puntos de control. Restauración de líneas o pixeles perdidos. Bandeado. Georeferenciación.

UNIDAD VII: Clasificación de imágenes. Clasificación no supervisada. Clasificación supervisada,

Datos auxiliares. Agrupamiento difuso. Redes neuronales artificiales. Clasificación contextual. Clasificación orientada a objetos. Clasificadores. Obtención y presentación de resultados. Productos cartográficos. Evaluación del error de clasificación. Clasificación basada en objetos. Clasificación SAM (Spectral Angle Map). Utilizacion de librerias

UNIDAD IX: técnicas de análisis multitemporal: el factor tiempo en los estudios de teledetección. Requisitos para el análisis multitemporal.

VII - Plan de Trabajos Prácticos

T. PRÁCTICO Nº 1 (a): Herramientas básicas en Teledetección. Uso del software QGIS/ENVI en Windows. Configuración de un proyecto, selección del SRC. Uso y configuración del administrador de complementos. Lectura con el Browser de QGIS de paquetes de los repositorios de imágenes. Importación de imágenes al proyecto. Lectura de encabezados y manejo básico de la información rasters con QGis.

T. PRÁCTICO Nº 1 (b) Pedido de imágenes satelitales para los siguientes prácticos.

T. PRÁCTICO Nº 2. Bases físicas de la teledetección.

 T. PRÁCTICO Nº 2 (a) espectro óptico: cuentas digitales a radiancia y reflectancia. Ejemplos de la importancia de hacer esta transformación. Estimación en planillas Excel y en ENVI/QGIS.

T. PRÁCTICO Nº 2 (b) Firmas espectrales. Comportamiento espectral de aguas, suelos, rocas, vegetación, hojas, pigmentos, en el espectro óptico. Bibliotecas espectrales. Comparación con imágenes satelitales multi-espectrales. Ejemplo usando CROPSCAN.

 T. PRÁCTICO Nº 2 (c) espectro térmico, de ley de Wien y Stefan Boltzmann para diferentes temperaturas de cuerpos. Ejercicios que definan las diferencias entre radiación emitida y reflejada por la superficie de la tierra. Estimación en planillas Excel y en ENVI/QGIS. Firmas espectrales.

T. PRÁCTICO Nº 3: Sistemas satelitales.

 Ejercicios que apunten a aclarar diferencias entre las resoluciones (radiométrica, temporal, espacial y angular) de imágenes y distintos tipos de sensores.

 Ejercicios que contemplen el uso de imágenes en distintas regiones del espectro: óptico, infrarojo térmico y radar. T. PRÁCTICO Nº 4. : Imágenes digitales e Interpretación visual de imágenes color.

 T. PRÁCTICO Nº 4 (a). Las imágenes digitales. Ejercicio comparativo entre imágenes analógicas y digitales. ¿se puede digitalizar imagen analógica? Datos digitales. Formatos de grabación y archivos más comunes. Realces y mejoras visuales. Ajuste del contraste. Combinaciones de Bandas espectrales. Composiciones en color, Falso color compuesto y Pseudocolor.

 T. PRÁCTICO Nº 4b: interpretación visual. Composiciones RGB específicas para cada análisis. Criterios para la interpretación visual: color, tono y textura. Formas y tamaños. Formas estructurales.

T. PRÁCTICO Nº 5: Pre-procesamiento

a) radiométrico.

Calculo de radiancias desde cuantas digitales. Estimación de la reflectancia a tope de la atmósfera. Para diferentes sensores. Absorción molecular refracción atmosférica. Fenómenos de Rayleigh, Mie y selectivo. Ver ejemplo de correcciones atmosféricas.

b)Correcciones geométricas.

Correcciones geométricas por remuestreo. Errores geométricos. . Delimitación de puntos de control. Restauración de líneas o pixeles perdidos. Bandeado. Georeferenciación. Ejemplo utilizando un DRONE.

T. PRÁCTICO Nº 6: Clasificación de imágenes.

 Ejercicios de clasificación no supervisada y clasificación supervisada. Productos cartográficos.

T. PRÁCTICO Nº 7: Evaluación del error de clasificación. Matrices de errores.

 Ejercicios de Clasificación basada en objetos.

 Clasificación SAM (Spectral Angle Map)

Ejemplos aplicados a una zona de interés. Utilizando diversas herramientas.

Practico de a) Gabinete

- b) Control de Campo
- c) Procesamiento de toma de datos

VIII - Regimen de Aprobación

- a) El alumno deberá cumplir con una asistencia mínima de ochenta por ciento (80%) a las clases teóricas y prácticas.
- b) Para su regularización deberá tener aprobado el cien por ciento (100%) de los Trabajos Prácticos.
- c) Se deberán aprobar 2 (dos) parciales con un mínimo de seis (6) sobre diez (10) puntos y los recuperatorios con un mínimo de seis (6) sobre diez (10) puntos.
- d) Cada evaluación parcial tiene 2 (DOS) recuperaciones, la cual debe concretarse en forma previa a la evaluación siguiente. La ausencia a un parcial será considerada aplazo.
- e) De la Aprobación: El Alumno que haya obtenido la regularización aprobará la asignatura con un Examen Final.
- f) Del Régimen de Promoción: Esta asignatura contempla el régimen de promoción sin examen final.
- g) El alumno podrá rendir la materia en la forma de un examen Libre, con contenidos teóricos y prácticos.

IX - Bibliografía Básica

- [1] [1] Diapositivas de clases. Disponibles Online. 2016.
- [2] [2] Chuvieco, E. Fundamentos de teledetección espacial, Madrid. 1995.
- [3] [3] Chuvieco, E. Teledetección Ambiental. Ed Ariel Madrid. 2008.

X - Bibliografia Complementaria

[1] [1]  Campbell, J. B.; Wynne, R. H. 2011. Introduction to Remote Sensing. London: CRC Press. 718p.

[2] [2]  Cheng, X.; Vierling, L.; Deering, D. 2005. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98: 63-79.

[3] [3]  Huete, A.R.; Glenn, E.P. 2011. Remote sensing of ecosystem structure and function. In: Weng, Q. Advances in Environmental Remote Sensing. Sensors, Algorithms and Applications. Boca Raton: CRC Press. 602p.

[4] [4]  Lillesand, T. M.; Kieffer, R. W. 2007. Remote Sensing and Image Interpretation. 4Th Ed. John Wiley & Sons: New York. 564p.

[5] [5]  Rees, W. G. 2001. Physical Principles of Remote Sensing. 2nd Ed. Cambridge University Press.

[6] [6]  Richards, J. A.; Jia, X. 2006. Remote Sensing Digital Image Analysis. An Introduction. Berlin: Springer-Verlag. 4th Ed. 454p.

XI - Resumen de Objetivos

OBJETIVOS GENERALES: Obtener el conocimiento fundamental de los procesos físicos relacionados al proceso de la Teledetección, las características de los sistemas sensores y los factores a tener en cuenta para la extracción de la información contenida en las imágenes y su posterior procesamiento y presentación en sistemas informáticos.

XII - Resumen del Programa

UNIDAD I: Teledetección o percepción remota. Definición. Nociones Introductorias. Evolución histórica de la teledetección.

UNIDAD II: Bases físicas de la teledetección.

UNIDAD III: Sistemas satelitales.

UNIDAD IV: Las imágenes digitales.

UNIDAD V: Interpretación visual de imágenes color.

UNIDAD VII: Clasificación de imá	enes. Clasificación no supervisada. Clasificación supervisada,
UNIDAD IX: técnicas de análisis m	ıltitemporal.
XIII - Imprevistos	
XIV - Otros	
AIV - OHOS	
ELEVA	CIÓN y APROBACIÓN DE ESTE PROGRAMA
	Profesor Responsable
Firma:	
Aclaración:	
Fecha:	

UNIDAD VI: Pre-procesamiento de imagenes.