

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica

(Programa del año 2019) (Programa en trámite de aprobación) (Presentado el 02/12/2019 09:52:51)

Area: Qca General e Inorganica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
ESTADO SÓLIDO	LIC. EN QUIMÍCA	3/11	2019	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
NARDA, GRISELDA EDITH	Prof. Responsable	P.Tit. Exc	40 Hs
BERNINI, MARIA CELESTE	Prof. Colaborador	P.Adj Exc	40 Hs
LOPEZ, CARLOS ALBERTO	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	Hs	Hs	Hs	Hs

Tipificación	Periodo

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas

IV - Fundamentación

Este curso se ofrece para completar la formación del futuro Lic. en Química, ya que:

- 1.- El contenido de esta materia con esta profundidad, es el único contacto con la temática que tendrán los futuros profesionales a lo largo de la carrera de grado.
- 2.- La experiencia indica que el desempeño laboral actual, se encuentra con frecuencia relacionado con el estado sólido y su problemática (cementeras, cerámicos, polímeros, procesos catalíticos, sólidos con propiedades ópticas y magnéticas específicas, tratamiento de metales, etc).
- 3.- Es necesario poseer los conocimientos impartidos en este curso para una completa formación preliminar en el desarrollo de la investigación científica.
- 4.- Este curso sirve como base para futuras propuestas en donde se aborden específicamente procesos que involucren sólidos (Diseño de reactores. Tratamientos de cerámicos y materiales en general).

V - Objetivos / Resultados de Aprendizaje

PROVEER al alumno los conocimientos y fundamentos del estado sólido.

INTRODUCIR a los futuros profesionales en los principios necesarios para: Comprender las técnicas de síntesis, caracterización y determinación de la estructura de sólidos. Entender las modificaciones de las propiedades originadas en los cambios estructurales de los sólidos. Incursionar en el análisis y selección de técnicas de diseño de materiales. Aplicar los conceptos básicos adquiridos en años anteriores (matemáticos, termodinámicos, químicos, experimentales) en el diseño y la síntesis de materiales.

PROVEER al alumno en esta etapa de su carrera, la capacidad de entender las aplicaciones de los distintos modelos y teorías

en el conocimiento global de sólidos en ciencia de materiales.

OFRECER al alumno interesado en la Química del Estado Sólido, los fundamentos, los métodos y software aplicados para una correcta identificación de sólidos y sus propiedades.

VI - Contenidos

Modulo 1: Estructura de Sólidos

Sólidos cristalinos. Naturaleza del enlace: sólidos iónicos, covalentes, moleculares, puente hidrógeno, metálicos, aleaciones y soluciones sólidas. Teoría de las bandas. Clasificación según factores geométricos. Sistemas cristalinos. Simetría en cristales: Clases de simetría. Grupos puntuales. Grupos espaciales. Redes de Bravais. Aplicaciones del modelo iónico al estudio de redes cristalinas. Desarrollo de redes típicas. Factores que afectan la estructura cristalina: estequiometría, estados de oxidación, número de coordinación, tamaños atómicos e iónicos. Aplicaciones de Teoría del Campo Cristalino (TCC) y Teoría del Campo Ligando (TCL).

Módulo 2: Defectos reticulares

Imperfecciones en sólidos: Defectos reticulares. Defectos electrónicos. Defectos atómicos. Dislocaciones. Defectos en plano. Frontera de grano. Concentración de imperfecciones: cálculos. Imperfecciones y propiedades físicas (eléctricas, magnéticas, ópticas y mecánicas).

Módulo 3: Reactividad de sólidos

Naturaleza de las reacciones del estado sólido. Nucleación y crecimiento cristalino: termodinámica y cinética. Estrategias preparativas: Condiciones generales. Métodos de síntesis de sólidos inorgánicos. Reacciones en estado sólido a altas temperaturas. Mecanosíntesis. Métodos de química suave o a bajas temperaturas. Deposición química de vapor (C V D). Transporte químico de vapor (CVT). Cristalización desde soluciones Introducción al diseño de materiales. Comparación de los distintos métodos.

Módulo 4: Métodos de caracterización de sólidos.

Caracterización estructural. Difracción de Rx (convencional y sincrotón). Difracción de neutrones: conceptos y aplicaciones generales. Difracción de polvos y de monocristal. Método de Rietveld. Análisis térmico diferencial (ATD). Análisis térmico gravimétrico (ATG). Espectroscopía IR y Raman. Espectroscopía Mösbauer. Espectroscopía óptica. Métodos magnéticos. Caracterización textural: Conceptos básicos de Microscopía electrónica de barrido (SEM) y Microscopía de trasmisión (TEM).

Módulo 5: Relación estructura - propiedades

Influencia de la estructura cristalina sobre las propiedades eléctricas (efecto piezoeléctrico y ferroeléctrico), magnéticas (ferro-, ferri- antiferro- y paramagnetismo), ópticas, térmicas y mecánicas.

VII - Plan de Trabajos Prácticos

Las clases estarán programadas como jornadas teórico-prácticas.

Para cada módulo se preveen trabajos prácticos de resolución de problemas y cálculos.

- 1.- Simetría molecular (4 hs)
- 2.- Simetría en Cristales (4 hs)
- 3.- Defectos Reticulares (4 hs)
- 4.- Aplicación de DRX de monocristal y de polvos a la dilucidación estructural. Ajustes por metodo de Rietveld. Difracción de neutrones. (4 hs)

NORMAS GENERALES DE SEGURIDAD

Condiciones de trabajo: Prevención. Normas de seguridad. Cuidado y limpieza del lugar de trabajo. Señalizaciones. Código de colores.

Hábitos de trabajo: Ubicación del material de seguridad como extintores, duchas de seguridad, lavaojos, botiquín, etc. Etiquetas y fichas de datos de seguridad de los productos. Campanas.

Protección personal: Normas básicas. Criterio y grados de protección. Elementos de protección personal. Guantes de seguridad. Guardapolvos. Gafas de seguridad.

Seguridad en el laboratorio: Seguridad en la manipulación de materiales y/o sustancias. Derrames. Tratamiento de polvos, gases y humos. Tratamiento de residuos.

TRABAJOS PRACTICOS DE LABORATORIO

- 1) Síntesis de compuestos cristalinos (8 hs)
- 2) Utilización de instrumental para su caracterización: DRX FTIR y Análisis térmico. (14 hs)
- 3) Observación de las muestras obtenidas en microscopio electrónico del LABMEM (2 hs)

VIII - Regimen de Aprobación

Condición de Alumno Regular

Asistencia al 80% de las clases de Trabajos Prácticos de Aula y Seminarios.

Realización y Aprobación del 100% de los Trabajos Prácticos de Laboratorio. Aprobación de una monografía y un Informe final de Trabajo de Síntesis y Caracterización de Sólidos Cristalinos.

Aprobación del 100% de los Exámenes Parciales (un total de 2(dos)) con un 70% de las respuestas correctas teniendo derecho a las recuperaciones pautadas en la reglamentación vigente.

IX - Bibliografía Básica

- [1] "Solid State Chemistry: Techniques" A.K.Cheetham, P. Day. Oxford Science Publications. Oxford University Press, 1987
- [2] "Cristales iónicos, defectos reticulares y no estequiometría." N. N. Greenwood. Ed. Alhambra-Madrid, 1970
- [3] "Crystal Structure Determination", W. Clegg. Oxford Science Publications. Oxford University Press, 1998.
- [4] "Fundamentals of crystallography" C. Giacovazzo, H. L. Monaco, D. Viterbo, F. Scordari, G. Gilli, G. Zanotti, M. Catti. IUCr. Oxford Science Pubs. 1995.
- [5] "Química Inorgánica", C. E. Housecroft, A.G. Sharpe, Pearson Prentice Hall. Pearson Educación S.A., Madrid, 2006.
- [6] "New Directions in Solid State Chemistry" C.N.R.Rao, J. Gopalakrishnan Cambridge University Press, 1997.
- [7] "Solid State Chemistry and its applications" A.R. West, John Wiley and Sons, London, 1984.
- [8] "Spectroscopic Methods in Mineralogy and Geology" F. C. Hawthorne. Paul H. Ribbe Ed. Department of Geological Sciences, Mineralogical Society of America, Virginia, USA, 1988.
- [9] "Introducción a la teoría de grupos para químicos" G. Davidson. Ed. Reverté, España, 1979

X - Bibliografia Complementaria

- [1] Tesis doctorales desarrolladas en el grupo de Química Inorgánica
- [2] Papers y Reviews de difusión internacional.
- [3] Páginas Web: The Cambridge Crystallographic Data Centre (CCDC). www.ccdc.cam.ac.uk; Departamento de Cristalografía y Biología Estructural del Instituto de Química-Física Rocasolano, CSIC. España http://www.xtal.iqfr.csic.es/Cristalografia/index.html

XI - Resumen de Objetivos

Proveer al alumno los conocimientos y fundamentos del estado sólido, mediante la comprensión de las técnicas de síntesis, caracterización y determinación de la estructura de sólidos y las modificaciones de las propiedades originadas en los cambios estructurales de los sólidos. Generar al alumno, en esta etapa de su carrera, la capacidad de entender las aplicaciones de los distintos modelos y teorías en el conocimiento global de sólidos en ciencia de materiales.

XII - Resumen del Programa

Módulo 1: Estructura de sólidos, Módulo 2: Defectos reticulares, Módulo 3: Métodos de caracterización de sólidos, Módulo 4: Reactividad de sólidos, Módulo 5: Relación estructura – propiedades.

XIII - Imprevistos

Las cinco horas restantes serán distribuidas no uniformemente a lo largo del cuatrimestre en concepto de consultas y tiempo que necesitan para actividades relacionadas con la síntesis de materiales.

XIV - Otros

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		