

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Electrónica

(Programa del año 2018) (Programa en trámite de aprobación) (Presentado el 02/08/2018 09:02:28)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
		19/12		
Electrónica Industrial	INGENIERÍA ELECTRÓNICA	-Mod.	2018	2° cuatrimestre
		17/15		

II - Equipo Docente

Docente	Función	Cargo	Dedicación
---------	---------	-------	------------

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
7 Hs	3 Hs	2 Hs	2 Hs	7 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
06/08/2018	16/11/2018	15	105

IV - Fundamentación

La materia Electrónica Industrial, ubicada en el cuarto año de la carrera, se fundamenta en la necesidad de que el futuro Ingeniero debe contar y manejar conocimientos acerca de los dispositivos, topologías y aplicaciones de electrónica de potencia, tanto teóricos como prácticos.

V - Objetivos / Resultados de Aprendizaje

Formar al futuro ingeniero para la selección, diseño e implementación de los sistemas fundamentales de la electrónica de potencia e introducirlo en rectificación polifásica, componentes electrónicos para el control de potencia, ratificación controlada, control de velocidad de motores de corriente continua y alterna y convertidores estáticos.

VI - Contenidos

Unidad No 1: Introducción

- 1. Definición de electrónica de potencia.
- 2. Electrónica de potencia vs electrónica lineal.
- 3. Aplicaciones de la electrónica de potencia.
- 4. Convertidores de potencia.
- 5. Naturaleza interdiciplinaria de la electrónica de potencia.
- 6. Clasificación de los dispositivos semiconductores de potencia: diodos, tiristores
- y llaves controlables.

- 7. Tipos de llaves controlables: BJT, MOSFET, IGBT, GTO, IGCT.
- 8. Comparación de llaves controlables.
- 9. Cálculo y selección de disipadores.

Unidad No 2: Rectificación no controlada

- 1. Conceptos básicos de rectificadores.
- 2. Puente rectificador monofásico.
- 3. Efectos de la inductancia de red.
- 4. Parámetros de calidad.
- 5. Distorsión de tensión.
- 6. Efectos de rectificadores monofásicos sobre la corriente de neutro en sistemas trifásicos de cuatro hilos.
- 7. Puente rectificador trifásico.
- 8. Efectos de la inductancia de red en sistemas trifásicos.
- 9. Distorsión de corriente de línea.
- 10. Comparación entre rectificadores monofásicos y trifásicos.

Unidad No 3: Rectificación controlada

- 1. Principio de operación del convertidor controlado por fase.
- 2. Circuitos de disparo para tiristores.
- 3. Semiconvertidor monofásico.
- 4. Convertidor monofásico completo.
- 5. Semiconvertidor trifásico.
- 6. Convertidor trifásico completo.
- 7. Efectos de la inductancia de red.

Unidad No 4: Convertidores DC-DC no aislados

- 1. Control de convertidores DC-DC.
- 2. Convertidor DC-DC reductor (Buck).
- 3. Convertidor DC-DC elevador (Boost).
- 4. Convertidor DC-DC reductor-elevador (Buck-Boost).
- 5. Convertidor DC-DC Cúk.
- 6. Convertidor DC-DC puente completo (Full Bridge).
- 7. Comparación de convertidores DC-DC.

Unidad No 5: Convertidores DC-DC aislados

- 1. Objetivo de la aislación en convertidores DC-DC.
- 2. Transformadores de alta frecuancia.
- 3. Modelo del transformador de alta frecuencia.
- 4. Convertidor Forward.
- 5. Convertidor Flyback.
- 6. Convertidor Cúk aislado.
- 7. Convertidor Push-Pull.
- 8. Convertidor puente completo aislado.
- 9. Convertidor semi-puente aislado.
- 10. Comparación entre las topologías Push-Pull, puente completo aislado y semipuente aislado.

Unidad No 6: Convertidores AC-AC

- 1. Clasificación de convertidores AC-AC.
- 2. Reguladores de tensión monofásicos.
- 3. Reguladores de tensión trifásicos.
- 4. Cicloconvertidores.
- 5. Convertidores matriciales.

Unidad No 7: Convertidores DC-AC

- 1. Objetivos de los convertidores DC-AC.
- 2. Inversores fuente de tensión y fuente de corriente.
- 3. Modulación sinusoidal por ancho de pulso (PWM-Sinusoidal).
- 4. Sobremodulación y modulación de onda cuadrada.
- 5. Inversores monofásicos.

- 6. Inversores trifásicos.
- 7. Efecto del tiempo muerto.
- 8. Modulación delta por banda de histéresis y por frecuencia fija.
- 9. Modulación por eliminación programada de armónicos.
- 10. Modulación vectorial.

Unidad No 8: Aplicaciones de la electrónica de potencia

- 1. Control de motores de DC.
- 2. Control de motores de AC de inducción: control V/Hz y vectorial.
- 3. Control de motores de AC de imanes permanentes: control vectorial.
- 4. Control de generadores de AC.
- 5. Convertidores de potencia involucrados en sistemas eólicos y fotovoltaicos.
- 6. Sistemas de transmisión de AC flexibles (FACTS).
- 7. Conceptos básicos de sistemas de generación distribuida y microrredes.

VII - Plan de Trabajos Prácticos

Plan de trabajos prácticos de aula

- 1. Introducción a la electrónica de potencia.
- 2. Convertidores AC-DC: rectificadores no controlados y rectificadores controlados.
- 3. Convertidores DC-DC: no aislados y aislados.
- 4. Convertidores AC-AC.
- 5. Convertidores DC-AC.

Plan de trabajos prácticos de laboratorio

1. Trabajos de configuración, medición e interpretación sobre convertidores AC-DC

no controlados y controlados tanto monofásicos como trifásicos.

- 2. Diseño e implementación de un convertidor DC-DC no aislado.
- 3. Diseño e implementación de un convertidor DC-AC monofásico.

VIII - Regimen de Aprobación

Regularización

- 1. Aprobar parciales con más de 60%.
- 2. Aprobar todos los trabajos prácticos de aula y laboratorio.
- 3. Tener 100% de asistencia a los prácticos de laboratorio.
- 4. Tener 80% de asistencia a las clases teóricas y prácticas.

Aprobación

- 1. Alumnos regulares: deberán rendir un examen teórico sobre el último programa de la materia que esté aprobado.
- 2. Alumnos libres: deberán realizar todos los prácticos de aula y laboratorio y presentarlos tres días antes del día del examen.
- El día del examen deberán resolver un examen teórico práctico sobre el último programa de la materia que este aprobado.

IX - Bibliografía Básica

- [1] Power Electronics: Converters, Applications and Design Mohan, Undeland, Robbins. Third Edition. John Wiley & Sons, Inc. 2003.
- [2] Electrónica de Potencia: convertidores, aplicaciones y diseño Mohan, Undeland, Robbins. Spanish Edition.

McGraw-Hill. 2009.

- [3] Power electroncis handbook Muhammad H. Rashid. Second Edition. Elsevier. 2007.
- [4] Electronica de potencia: circuitos, dispositivos y aplicaciones Muhammad H. Rashid. Tercera edición. Prentice Hall. 2004.
- [5] Fundamentals of Power Electronics Erikson, Maksimovic. Second Edition. Electronic Services. 1999.
- [6] Control de Velocidad V/Hz de Motores de Inducción Trifásicos: Detalles de una aplicación práctica Federico Serra, Cristian Falco. Editorial Académica Española. 2012.

X - Bibliografia Complementaria

- [1] Power Electronics and Variable Frequency Drives: Technology and Applications Bimal K. Bose. IEEE Press. 1997.
- [2] Power Electronics and Motor Drives: Advances and Trends Bimal K. Bose. Elsevier. 2006.
- [3] Pulse WidthModulation for Power Converters: Principles and Practice Holmes, Lipo. IEEE Press. 2003.
- [4] Switch Mode Power Converters: Design and Analisis Keng Wu. Elsevier. 2006.
- [5] Voltage-Sourced Converters in Power Systems: Modeling, Control and Applications Yazdani, Iravani. IEEE Press. 2010.
- [6] Electric Motor Drives: Modeling, Analysis and Control R. Krishnan. Prentice Hall. 2001.
- [7] Analysis of ElectricMachinery and Drive Systems Krause, Wasynczuk, Sudhoff. Second Edition. IEEE Press, John Wiley & Sons, Inc. 2002.

XI - Resumen de Objetivos

Formar al futuro ingeniero para la selección, diseño e implementación de convertidores electrónicos de potencia en las diferentes aplicaciones de las prácticas de ingeniería.

XII - Resumen del Programa

Unidad No 2: Rectificación no controlada.

Unidad No 3: Rectificación controlada.

Unidad No 4: Convertidores DC-DC no aislados.

Unidad No 5: Convertidores DC-DC aislados.

Unidad No 6: Convertidores AC-AC.

Unidad No 7: Convertidores DC-AC.

Unidad No 8: Aplicaciones de la electrónica de potencia.

XIII - Imprevistos		
-		
XIV - Otros		

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		