

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingenieria de Procesos Area: Procesos Físicos

(Programa del año 2018) (Programa en trámite de aprobación) (Presentado el 25/04/2018 11:54:46)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
		024/1		
Fisicoquímica	INGENIERÍA QUÍMICA	2-19/	2018	1° cuatrimestre
		15		

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ESQUENONI, SILVIA MATILDE	Prof. Responsable	P.Asoc Exc	40 Hs
ALANIZ, GABRIELA ISABEL	Responsable de Práctico	JTP Exc	40 Hs
FALIVENE JAMIER, CLAUDIO GUSTA	Auxiliar de Práctico	A.1ra Simp	10 Hs
SOTERAS, EDGAR MARIO	Auxiliar de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal					
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. To				Total	
4 Hs	Hs	4 Hs	1 Hs	9 Hs	

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
12/03/2018	22/06/2018	15	135	

IV - Fundamentación

La asignatura FISICOQUIMICA forma parte del Plan de Estudios de Ingeniería Química, dictándose en el primer cuatrimestre del tercer año del mencionado Plan. La Fisicoquímica pertenece a las ciencias de la Ingeniería, incluyendo conocimientos de las Ciencias Básicas pero con orientación y aplicación propia de la especialidad. El Ingeniero Químico necesita adquirir los conocimientos básicos de la Fisicoquímica en vista de sus aplicaciones en procesos de separación, análisis de reactores químicos y diseño de procesos. Además, adquirir buen entendimiento de los principios del equilibrio y de la cinética química y capacidad para aplicarlos en la solución de problemas prácticos. También se pretende que adquiera la capacidad para desempeñarse en el trabajo experimental, tanto desde el punto de vista de la prolijidad y exactitud en el manejo de material, como en la adquisición de una metodología rigurosa en el trabajo experimental. Se propone, también que desarrolle su capacidad de pensar independientemente, su espíritu crítico y su capacidad creativa. Que aprenda a relacionarse armoniosamente con sus semejantes en un clima de colaboración y cordialidad.

V - Objetivos / Resultados de Aprendizaje

En particular se busca que el alumno desarrolle:

- Facilidad para aplicar las condiciones de equilibrio a sistemas heterogéneos constituídos por uno o más componentes.

- Capacidad para plantear y resolver problemas que atañen al comportamiento de soluciones líquidas reales.
- Facilidad para interpretar y aplicar datos de medidas de conductividades.
- Capacidad para calcular y medir potenciales de pilas y plantear problemas de estabilidad de metales.
- Capacidad para realizar un estudio mecanístico de laboratorio y encontrar la forma de inhibir o acelerar una reacción.
- Comprensión de las bases y conocimientos de las aplicaciones del equilibrio superficial.
- Lograr del alumno la capacitación del nexo existente entre la teoría y la práctica.
- Desarrollar un espíritu de trabajo coherente con las funciones que debe desempeñar en cursos superiores.
- Adquirir entrenamiento en consultas bibliográficas, lectura de artículos científicos y búsqueda de información.

VI - Contenidos

UNIDAD 1: EQUILIBRIO ENTRE FASES I

Sistemas de un componente. Estabilidad de fases. Sistemas de varios componentes. Regla de las fases.

Equilibrio entre soluciones ideales liquidas y gaseosas. Líneas de unión y regla de la palanca. Desviaciones de la ley de Raoult. Destilación de líquidos binarios. Soluciones diluidas. Sistema Racional y Sistema Practico. Introducción al tratamiento de soluciones reales.

UNIDAD 2: EQUILIBRIO ENTRE FASES II

Miscibilidad parcial. Destilación de mezclas inmiscibles y parcialmente miscibles. Distribución de un soluto entre dos solventes inmiscibles. Propiedades coligativas. Descenso de la temperatura de fusión. Elevación de la temperatura de ebullición.. Presión osmótica.Representación gráfica de sistemas ternarios.

UNIDAD 3: EQUILIBRIO EN LA FASE SUPERFICIE

Tensión superficial. Superficies curvas. Películas superficiales. Exceso superficial. Adsorción sobre sólidos: distintos modelos de isotermas de adsorcion. Angulo de contacto. Capilaridad.Coloides.

UNIDAD 4: SOLUCIONES DE ELECTROLITOS

Termodinámica de soluciones de electrolitos. Conducción en celdas electrolíticas. Leyes de Faraday. Conductividad específica y equivalente. Medida de conductividad. Leyes empíricas. Teoría elemental de la migración iónica. Mecanismo de transferencia protónica. Ecuación de Onsager. Números de transporte.

UNIDAD 5: EQUILIBRIO EN PILAS

Celdas electrolíticas y pilas. Potencial electroquímico. Convenciones. Electrodo normal de hidrógeno: Ecuación de Nernst. Potenciales normales de electrodos. Clases de electrodos. Potenciales de pilas. Relación entre fuerza electromotriz de la pila y energía libre de la reacción de la pila. Introducción a la cinética electroquímica.

UNIDAD 6: CINÉTICA DE REACCIONES

Velocidad de reacción. Orden de una reacción. Análisis de datos cinéticos. Medidas de velocidad de reacción. Reacciones elementales. Molecularidad. Ley de Arrhenius. Teoría del estado de transición. Reacciones complejas. Comparación de la cinética de reacciones en solución con la fase gaseosa. Introduccion a la Catálisis homogénea.

VII - Plan de Trabajos Prácticos

TRABAJOS PRÁCTICOS: De Aula

Se resolverán problemas relacionados con los temas de las clases teóricas.

TRABAJOS PRACTICOS: DE LABORATORIO

- 0.- Seguridad en el laboratorio. El propósito de este práctico es instruir a los alumnos sobre las medidas de seguridad en laboratorios, es decir darles el conjunto de medidas preventivas destinadas a proteger la salud de los que allí se desempeñan frente a los riesgos propios derivados de la actividad, para evitar accidentes y contaminaciones tanto dentro de su ámbito de trabajo, como hacia el exterior. Para ello deberán cumplirse las normas fijadas en carteleras, instructivos y recomendaciones realizadas por los docentes y dispuestas en el laboratorio.
- 1.- Curvas de Calentamiento
- 2.- Diagrama de miscibilidad parcial.
- 3.- Tensión superficial
- 4.- Angulo de contacto.
- 5.- Adsorción.
- 6.- Conductividades de electrolitos.
- 7.- Determinación de parámetros cinéticos
- 8.- Influencia de la fuerza iónica sobre la velocidad de reacción

VIII - Regimen de Aprobación

RÉGIMEN DE ALUMNOS REGULARES

DICTADO: El dictado de la materia se realizará mediante la siguiente modalidad:

Dictado de clases teóricas-prácticas:

Dictado de clases prácticas de aula

Dictado de clases prácticas de laboratorio

TRABAJOS PRACTICOS DE AULA

Se resolverán problemas prácticos de aula aplicando cada uno de los temas desarrollados en los teóricos.

TRABAJOS DE LABORATORIO

1.- El alumno concurrirá al laboratorio preparado para realizar el trabajo práctico.

Se evaluarán los conocimientos mediante un cuestionario previo.

- 2.- El trabajo práctico se realizará con la guía y supervisión del personal auxiliar.
- 3.- El alumno deberá cumplir con el 100 % de asistencia a las prácticas de laboratorio

y recuperará aquellas en las cuales estuvo ausente para obtener la regularidad.

PARCIALES

Se tomarán dos parciales en el transcurso del cuatrimestre, los cuales tendrán cada uno dos recuperaciones. Consistirán de problemas similares a los resueltos en clase y de preguntas sobre las prácticas de laboratorio.

REGULARIZACIÓN

Se obtendrá la regularización de la materia cumpliendo con los requisitos de asistencia, mediante la aprobación de los dos parciales y la presentación de la carpeta con los problemas resueltos y los informes de laboratorio. Para la aprobación de

los

parciales, los alumnos deberán obtener siete puntos en cada uno de ellos.

APROBACION

Para aprobar la materia el alumno deberá rendir un examen oral.

El programa de examen coincide con el programa analítico

RÉGIMEN DE ALUMNOS LIBRES

La asignatura no contempla el examen libre

IX - Bibliografía Básica

- [1] FISICOQUÍMICA. Castellan. 2da ed.1998. Ed. Fondo Educativo Interamericano. Puerto Rico.
- [2] FISICOQUIMICA. Atkins. 6ta Edición.1999. Ed.Iberoamericana.
- [3] PHYSICAL CHEMISTRY. Atkins. Sixth Edition.1999. Ed. University Press. Oxford.
- [4] INTRODUCCIÓN A LA TERMODINÁMICA EN INGENIERÍA QUÍMICA, 7ºEdicion.2003. Smith J.M., Van Ness
- [5] H.C. Mc Graw Hills Books
- [6] PHYSICAL CHEMISTRY. T. Engel, P. Reid y W. Hehre. Third Edition. 2013. Ed. Pearson. United States of America.
- [7] (Disponible en la Asignatura)
- [8] FISICOQUIMICA BÁSICA. A. L. Capparelli. 1ºEdicion. E-book. 2013. Editorial de la Universidad Nacional de La Plata.
- [9] Edulp. La Plata. Buenos Aires. ISBN 978-950-34-0972-5. (Disponible en la Asignatura)
- [10] QUIMICA FISICA. Atkins y De Paula. 8ta Edición. 2008. Ed. Médica Panamericana. Buenos Aires. (Disponible en la [11] Asignatura)
- [12] FISICOQUIMICA. Ira Levine. 4° Ed. Volumen I y I. 2004. Ed. Mc Graw Hill. (Disponible en la Asignatura)

X - Bibliografia Complementaria

[1] ELECTROQUÍMICA MODERNA. Bockris-Reddy. 1º Edición. 1980. Ed. Reverté, S.A REGLA DE LAS FASES.

- [2] FERGUSON. 1º Edición. 1968. Ed. Alhambra. Madrid..
- [3] MANUAL PARA LABORATORIO DE FISICOQUIMICA. Torres, Juárez, Reyes, Sánchez, Álvarez, Martínez. Instituto
- [4] Politécnico Nacional. Unidad Profesional Interdisciplinaria de Biotecnología. México. 2009. (Disponible en la Asignatura)
- [5] ELECTROQUIMICA Y ELECTROCATALISIS.MATERIALES: ASPECTOS FUNDAMENTALES Y
- [6] APLICACIONES. Vol1a. Nicolas Alonso-Vante. e-libro.net. Primera edición virtual y en papel. Buenos Aires. 2003.
- [7] (Disponible en la Asignatura)
- [8] MODERN ASPECTS OF ELECTROCHEMISTRY. J.O'Bockris, Ralphe e. White, B.E. Conway. 2002. Kluwer
- [9] Academic Publisher. New York. (Disponible en la Asignatura)
- [10] UNA MIRADA FISICOQUIMICA A TRAVES DEL VIDRIO. Horacio Corti. Colección Ciencia Joven 33.. Eudeba.
- [11] 2008. Buenos Aires
- [12] PHYSICAL PRINCIPLES OF FOOD PRESERVATION. 2°Ed, Revised and Expand. M. Karel y D. Lund. Marcel
- [13] Dekker, Inc. 2003
- [14] CIENCIA DE LOS ALIMENTOS. Bioquimica. Microbiologia. Procesos. Productos. Jeantet y Croquennec. 2006

XI - Resumen de Objetivos

La asignatura FISICOQUIMICA forma parte del Plan de Estudios de Ingeniería Química, dictándose en el primer cuatrimestre del tercer año del mencionado Plan. La asignatura tiene como objetivo lograr que el alumno comprenda los procesos básicos de la Fisicoquímica y su aplicación al estudio de soluciones no ideales y equilibrio de fases, e introducir al alumno en el estudio de la cinética química.

XII - Resumen del Programa

Equilibrio entre fases para sistemas de uno y varios componentes. Sistemas binarios y ternarios. Termodinámica de soluciones de electrolitos. Conductividad de electrolitos. Termodinámica de pilas. Cinética química: análisis de datos y teorías. Cinética de reacciones en solución. Catálisis homogénea. Fenómenos superficiales

XIII - Imprevistos			
XIV - Otros			

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA			
	Profesor Responsable		
Firma:			
Aclaración:			
Fecha:			