

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica Area: Qca General e Inorganica

(Programa del año 2017)

I - Oferta Académica

Materia	Carrera	Plan Año	Período
QUIMICA INORGANICA	FARMACIA	19/13 -CD 2017	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
NARDA, GRISELDA EDITH	Prof. Responsable	P.Tit. Exc	40 Hs
BRUSAU, ELENA VIRGINIA	Prof. Colaborador	P.Asoc Exc	40 Hs
ACOSTA, MARIANO	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	rácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Tota	
3 Hs	Hs	Hs	3 Hs	6 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
13/03/2017	23/06/2017	15	90

IV - Fundamentación

El curso pretende dar una formación básica en Química Inorgánica en temas generales relacionados con Reactividad en Química Inorgánica y tendencias en la Tabla Periódica, y otros más específicos como la naturaleza y propiedades del Estado Sólido y Química de Coordinación. Los alumnos que inician el curso cuentan con los principios básicos de Química y Fisicoquímica, los cuales son aplicados a la resolución de problemas y realización de experiencias de laboratorio para sistemas inorgánicos. Así, se aplican conceptos vinculados al Equilibrio Químico e Iónico en particular, Procesos Redox, Termodinámica, Cinética, etc. Los temas abordados resultan de utilidad para facilitar la interpretación de contenidos en cursos superiores y posteriores actividades profesionales

V - Objetivos / Resultados de Aprendizaje

OBJETIVOS GENERALES

Transmitir a los estudiantes los conceptos de la Química Inorgánica necesarios como base para la predicción, análisis y justificación del comportamiento químico de elementos y compuestos inorgánicos. Realizar un estudio comparativo de sus propiedades en el contexto de las tendencias periódicas. Desarrollar nuevas habilidades y destrezas mediante la aplicación de principios y conceptos vistos previamente por el alumno, profundizando el grado de conocimiento y proyectando el mismo a las necesidades de cursos superiores.

OBJETIVOS ESPECIFICOS

Lograr que el alumno:

- Conozca los conceptos de la Química Inorgánica y su relación con áreas específicas de su carrera.
- Integre y aplique los conceptos vistos en Química General I y II al análisis de los procesos en Química Inorgánica, distinguiendo entre aquellos que son redox o ácido base.
- Comprenda y utilice los principios de la Química de Coordinación y del Estado Sólido.
- Prediga y explique el comportamiento de los elementos y compuestos desde el punto de vista termodinámico.
- Fundamente las propiedades (tipo de enlace formado, estructura molecular, tipo de sólido, etc.) que presentan los elementos y sus compuestos de acuerdo a su ubicación en la Tabla Periódica (analizada por grupos y períodos), en el contexto de las propiedades periódicas.
- Adquiera adiestramiento en el manejo de técnicas de laboratorio y se inicie en la aplicación de estrategias para resolver problemas concretos en el campo de la Química Inorgánica.
- Conozca las fuentes donde encontrar la información necesaria para resolver los problemas planteados (bibliografía, manuales, información on line, etc.).
- Adquiera la capacidad de exponer contenidos específicos en forma de seminarios, generando así la discusión de temas académicos en el aula.
- Se informe y aplique las Normas de Seguridad en el manejo de productos químicos y adquiera buenas prácticas de laboratorio.

VI - Contenidos

PROGRAMA ANALITICO

Tema 1

Estado Sólido. Concepto de sólido amorfo y cristalino. Celda Unitaria. Red Espacial. Clasificación. Sistemas Cristalográficos. Visión molecular y aspectos termodinámicos del proceso de disolución. Solubilidad y cristalización. Curvas de solubilidad. Aplicación del concepto de Kps. Fundamentos y técnicas del proceso de cristalización. Sólidos iónicos, covalentes, moleculares y metálicos. Aleaciones.

Tema 2

Reactividad en Química Inorgánica. Análisis de parámetros termodinámicos y cinéticos relacionados con la espontaneidad y labilidad de un proceso. Reacciones ácido-base: conceptos de Arrhenius, Brönsted-Lowry, Lewis y Pearson. Carácter ácido-base de especies en solución. Reacciones redox. Ecuación de Nernst. Sistematización de datos de potencial: Diagramas de Latimer, Frost, Elligham y Pourbaix. Reacciones de complejación, descomposición térmica e hidrólisis.

Tema 3

Química de Coordinación. Tipos de Ligandos. Nomenclatura de complejos. Estereoquímica. Isomería de posición y estereoisomería. Teorías de Enlace en Química de Coordinación: Teoría de Lewis, Teoría del Enlace de Valencia, Teoría del Campo Cristalino, Teoría del Campo Ligando y Teoría del Orbital Molecular. Efecto de Jahn-Teller. Reactividad. Color y Magnetismo. Estabilidad y Cinética. Descripción de quelatos, aductos, clusters, cúmulos, cubanos, pi-ácidos, organometálicos, metalocenos y clatratos. Compuestos de coordinación en sistemas biológicos.

Tema 4

Tabla Periódica. Propiedades periódicas: tendencias horizontales, verticales y diagonales. Radios atómicos e iónicos, energías de ionización, carga nuclear efectiva, afinidad electrónica, electronegatividad, poder polarizante y carácter metálico. Principio de singularidad. Estudio de la variación sistemática de propiedades de los elementos y sus compuestos. Variación del carácter iónico-covalente y ácido-base de óxidos, carburos, nitruros, sulfuros e hidruros. Estados de oxidación. Geometría adoptada por los elementos en sus distintos estados de oxidación.

Tema 5

Elementos Representativos de los grupos 1 y 2. Generalidades. Tendencias y principales propiedades. Reactividad. Haluros, óxidos, peróxidos, superóxidos, hidróxidos, oxosales. Química redox. Química de coordinación. Metalurgia. Aplicaciones en procesos industriales, participación en sistemas biológicos y farmacológicos.

Tema 6

Elementos Representativos de los grupos 13 y 14. Generalidades: configuración electrónica y estados de oxidación; estados iónicos y covalencias; efecto del par inerte. Tendencias y principales propiedades; casos del boro y del carbono. Estabilidad de óxidos, hidruros, haluros y otras sales. Química en solución. Química redox. Metalurgia. Aplicaciones en procesos industriales, participación en sistemas biológicos y farmacológicos.

Tema 7

Elementos Representativos de los grupos 15 y 16. Generalidades: configuración electrónica y estados de oxidación; estados iónicos y covalencias; efecto del par inerte. Tendencias y principales propiedades: variación del carácter metálico. Estabilidad de óxidos, hidruros, haluros y otras sales. Oxácidos, especies condensadas. Química en solución. Química redox. Metalurgia. Aplicaciones en procesos industriales, participación en sistemas biológicos y farmacológicos.

Tema 8

Elementos Representativos del grupo 17. Generalidades: configuración electrónica y estados de oxidación; estados iónicos y covalencias. Estabilidad de óxidos, hidruros, haluros y otras sales. Oxácidos. Química en solución. Química redox. Metalurgia. Elementos del Grupo 18. Propiedades físicas y químicas de los gases nobles. Compuestos de xenón. Otros compuestos de los gases nobles. Aplicaciones en procesos industriales, participación en sistemas biológicos y farmacológicos de los elementos de estos grupos. Hidrógeno: isótopos del hidrógeno. Propiedades físicas y químicas del hidrógeno. Síntesis y usos del hidrógeno. Hidruros: clasificación y propiedades generales.

Tema 9

Elementos de Transición y Postransición. Conceptos. Clasificación. Generalidades. Tendencias. Principales propiedades. Estudio de la química de los elementos de la primera serie de transición y elementos de postransición. Química en solución. Química redox. Metalurgia. Aplicaciones en procesos industriales, participación en sistemas biológicos y farmacológicos.

Tema 10

Elementos de Transición. Estudio de la química de los elementos de la segunda y tercera serie de transición. Lantánidos y actínidos. Generalidades y tendencias. Análisis de algunas propiedades de estos elementos. Química en solución. Química redox. Metalurgia. Aplicaciones en procesos industriales, participación en sistemas biológicos y farmacológicos.

VII - Plan de Trabajos Prácticos

PLAN DE TRABAJOS PRACTICOS DE AULA

- 1. Tipos de Sólidos. Solubilidad de compuestos inorgánicos. Aplicación del concepto de Kps. Manejo de curvas de solubilidad. Ejercicios. (3 h)
- 2. Cálculos de Reactividad (incluye sólidos, gases y soluciones). Ejercicios. (6 h)
- 3. Teorías de enlace en Compuestos de Coordinación. Ejercicios. (3 h)
- 4. Estabilidad de complejos. Ejercicios. (3 h)
- 5. Elementos Representativos. Resolución de cuestionarios. (6 h)
- 6. Algunos aspectos sistemáticos de las tres Series de Transición y Elementos de Postransición. Resolución de cuestionarios.(6 h)

PLAN DE TRABAJOS PRACTICOS DE LABORATORIO

- 1. Procesos de cristalización y solubilidad. (3 h)
- 2. Reacciones ácido-base, redox, endotérmicas y exotérmicas. (3 h)
- 3. Compuestos de coordinación. (3 h)
- 4. Elementos representativos: Principales reacciones de los elementos de los bloque s y p. (3 h)
- 5. Elementos de transición y post-transición: Equilibrios ácido-base y redox en 1ra serie de transición. Equilibrios ácido-base y redox en post-transición, 2da y 3ra serie de transición. (3 h)
- 6. Trabajo Práctico de Laboratorio Especial: Determinación de hidróxidos en un comprimido de acción antiácida en base al analisis de su carácter acido-base en comparación con el del bicarbonato de sodio. (3 h)

NORMAS GENERALES DE SEGURIDAD

Hábitos de trabajo: Prevención. Normas de seguridad. Cuidado y limpieza del lugar de trabajo. Etiquetas y fichas de datos de seguridad de los productos. Código de colores.

Condiciones de trabajo: Ubicación del material de seguridad como extintores, duchas de seguridad, lavaojos, botiquín, campanas, etc. Señalizaciones.

Protección personal: Normas básicas. Criterio y grados de protección. Elementos de protección personal. Guantes de seguridad. Guardapolvos. Gafas de seguridad.

Seguridad en el laboratorio: Seguridad en la manipulación de materiales y/o sustancias. Derrames. Tratamiento de polvos, gases y humos. Tratamiento de residuos.

VIII - Regimen de Aprobación

El Curso está estructurado en clases Teóricas, Trabajos Prácticos de Aula y de Laboratorio, según las reglamentaciones rectorales y de Facultad vigentes.

- 1- Trabajos Prácticos
- Trabajos Prácticos de Aula

Cada práctico se desarrollará en una o más jornadas en los horarios convenidos para tal fin. El porcentaje de asistencia mínimo a las clases prácticas para lograr la regularidad es del 80%.

• Trabajos Prácticos de Laboratorio

El alumno deberá aprobar el 100% de trabajos prácticos de laboratorio para lograr la regularidad. Se prevé un cuestionario escrito previo a la realización de las experiencias. El acceso a la primeras recuperaciones de cuestionarios de trabajos prácticos de laboratorio se logra aprobando el 70% de los cuestionarios en primera instancia; el derecho a segunda instancia se recuperación se logra con la aprobación del 50% de las anteriores.

2- Exámenes parciales

Los Trabajos Prácticos de Aula y Laboratorio se evaluarán a través de Exámenes Parciales cuyo temario, fechas y horarios serán publicados con la debida antelación. Para poder rendir los exámenes parciales, el alumno deberá haber aprobado previamente los cuestionarios de laboratorio incluidos en la evaluación. Para lograr la regularidad, el alumno deberá aprobar el 100% de los exámenes parciales, con el 70% de las respuestas correctas, teniendo derecho a dos recuperaciones para cada parcial.

a. Condición de REGULAR

Alcanzadas las condiciones arriba mencionadas sobre los Trabajos Prácticos de Aula, Laboratorio y Exámenes Parciales, el alumno adquirirá la condición de regular.

b. Condición PROMOCION SIN EXAMEN FINAL

Esta opción no está disponible para este curso.

EXAMEN FINAL

Para lograr la aprobación del curso deberá rendir un examen final que podrá ser escrito y/u oral en los turnos que estipule la Facultad de Química, Bioquímica y Farmacia en el calendario académico.

Considerando que el curso pertenece al segundo año de la currícula y cuenta con una carga horaria importante de trabajos prácticos de laboratorio, la realización de la parte experimental resulta esencial para completar la formación básica de los alumnos; esto es, que el alumno aplique las Normas de Seguridad en el manejo de productos químicos y materiales de laboratorio, adquiera destreza y habilidad en estas actividades y logre una correcta correlación de las mismas con los conceptos teóricos brindados. Así, no existe la alternativa de EXAMEN FINAL LIBRE para esta asignatura

IX - Bibliografía Básica

- [1] C. E. Housecroft, A. G. Sharpe "Química Inorgánica", 2da Edición, Pearson Prentice Hall, Pearson Educación S.A., Madrid, 2006.
- [2] D. F. Shriver, P. W. Atkins, "Química Inorgánica", 4ta Edición, Ed. Mc. Graw Hill, Buenos Aires, 2006.
- [3] D. F. Shriver, P. W. Atkins, C. H. Langford, "Química Inorgánica", Volúmenes 1 y 2, 2da Edición, Ed. Reverté, Barcelona, 1998.
- [4] A. G. Sharpe, "Química Inorgánica", 1era Edición, Editorial Reverté, Barcelona, 1989.
- [5] G. E. Rodgers, "Química Inorgánica: Introducción a la Química de Coordinación, Estado Sólido y Descriptiva Mc.Graw-Hill, Madrid-Buenos Aires, 1995.
- [6] J. E. Huheey, "Química Inorgánica: Principios de Estructura y Reactividad", 2da Edición, Harla S.A., México, 1981.
- [7] S. Baggio, M. A. Blesa, H. Fernández, "Química Inorgánica. Teoría y Práctica". 1ª Ed. UNSAM EDITA, 2012.
- [8] J. C. Pedregosa y equipo colaborador, "Guías de Estudio de Química Inorgánica", UNSL, 2008.
- [9] Portales de Internet (Consultar a los docentes a cargo de la materia para este tipo de búsquedas).

X - Bibliografia Complementaria

- [1] F. A. Cotton, G. Wilkinson, "Química Inorgánica Avanzada", 4ta Edición, Ed. Limusa, México, 1990.
- [2] D. M. P. Mingos, "Essential Trends in Inorganic Chemistry", 1era Edición, Oxford University Press, Oxford, 1998.
- [3] I. S. Butler, J. F. Harrod, "Química Inorgánica: Principios y Aplicaciones", 1era Edición, Addison-Wesley Iberoamericana, Delaware, USA, 1992.
- [4] G. L. Miessler, D. A. Tarr, "Inorganic Chemistry", 2da Edición, Prentice Hall, New Jersey, USA, 1998.
- [5] N. Greenwood, A. Earnshaw, "Chemistry of the Elements", 5ta Edición, Pergamon Press, Oxford, 1986.
- [6] B. Douglas, D. McDaniel, J. Alexander, "Concepts and models of Inorganic Chemistry", 3era Edición, J. Wiley and Sons, New York, 1994.
- [7] F. Basolo, R. Johnson, "Química de los compuestos de coordinación", 1era Edición, Ed. Reverté, 1967.
- [8] E. J. Baran, "Química Bioinorgánica", 2da Edición, McGraw-Hill/Interamericana de España, S. A., España, 1995.

XI - Resumen de Objetivos

Transmitir a los estudiantes los conceptos de la Química Inorgánica necesarios como base para la predicción, análisis y justificación del comportamiento químico de elementos y compuestos inorgánicos. Realizar un estudio comparativo de sus propiedades en el contexto de las tendencias periódicas. Desarrollar nuevas habilidades y destrezas mediante la aplicación de principios y conceptos vistos previamente por el alumno, profundizando el grado de conocimiento y proyectando el mismo a las necesidades de cursos superiores.

XII - Resumen del Programa

Estado sólido: Tipos de sólidos; solubilidad de sólidos y procesos de separación y fraccionamiento en Química Inorgánica. Reactividad en Química Inorgánica: Procesos ácido-base y redox. Química de Coordinación: Conceptos, teorías de enlace y estabilidad. Estudio general fundamentado de las tendencias de propiedades verticales, horizontales y diagonales en la Tabla Periódica.

XIII - Imprevistos