

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Fisica

(Programa del año 2016) (Programa en trámite de aprobación) (Presentado el 02/12/2016 10:22:26)

Area: Area I: Basica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
FISICA TERMICA II	LIC.EN FISICA	015/0 6	2016	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	3 Hs	5 Hs	Hs	8 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2016	18/11/2016	15	120

IV - Fundamentación

En Física Térmica I los estudiantes han sido introducidos en los conceptos fundamentales de la termodinámica. Se han definido las magnitudes más relevantes y se han deducido sus relaciones formales. Todo esto ha sido aplicado a unos pocos sistemas sencillos tales como los gases ideales.

En esta asignatura se pretende enfatizar el aspecto fenomenológico de la termodinámica y aprender a calcular las distintas magnitudes a partir de datos experimentales. Se aspira a darle un carácter concreto a las distintas magnitudes.

También resulta necesario que los estudiantes conozcan un poco sobre el estado líquido de la materia. Por ellos se los introduce en el estudio de soluciones y mezclas y de las leyes fenomenológicas que las rigen.

En la asignatura anterior se han estudiado algunos diagramas de fase sencillos. Pero se hace necesario poner a los estudiantes en contacto con diagramas de fase realistas que obviamente son más complejo. Eso se hace en esta asignatura. Así mismo se analizan cuantitativamente los diagramas de fase de mezclas.

El estudio del concepto de equilibrio es central en termodinámica. En esta asignatura los estudiantes son introducidos en el estudio del equilibrio de reacciones químicas. Se aspira a comprender cómo se puede predecir el estado de equilibrio de un sistema físico a partir de las propiedades termodinámicas de reactivos y productos.

Finalmente se quiere comenzar con el estudio de fenómenos de no-equilibrio. Para ello se toma como sistema de análisis las reacciones químicas. Se estudian las leyes fenomenológicas que las rigen y se enfatiza el análisis de aquellas en las cercanías

V - Objetivos / Resultados de Aprendizaje

- Enfatizar el caracter fenomenológico de la termodinámica
- Calcular magnitudes termodinámicas a partir de información experimental.
- Conocer las leyes empíricas que rigen el comportamiento de las soluciones.
- Comprender y analizar cuantitativamente los diagramas de fase de sustancias y mezclas reales.
- Comprender el equilibrio de una reacción química
- Calcular las condiciones de equilibrio de una reacción a partir de propiedades termodinámicas.
- Conocer las leyes fenomenológicas que rigen la cinética de reacciones químicas.

VI - Contenidos

Unidad 1: Conceptos de termodinámica

Entropía. Entalpía. Energías libres de Helmholtz y de Gibbs. Propiedades de la energía interna. Potencial químico.

Unidad 2: Cambios de estado: transformaciones físicas de sustancias puras.

La estabilidad de las fases. Equilibrio de fases y diagramas de fases. La frontera sólido-líquido. La frontera líquido-vapor. La frontera sólido-vapor. Algunos sistemas reales.

Unidad 3: Cambios de estado: transformaciones físicas de mezclas simples.

Magnitudes molares parciales: volumen molar parcial y función de Gibbs de mezcla. Potenciales químicos de los líquidos. Leyes de Raoul y Henry. Mezclas líquidas. Mezcla de líquidos volátiles: diagramas de presión de vapor. Disoluciones reales y actividades.

Unidad 4: Cambios de estado: regla de las fases

Deducción de las reglas de las fases. Sistemas de un componente: diagramas de gases. Sistemas de dos componentes: diagramas de fase líquido-líquido. Regla de las fases.

Unidad 5: Equilibrio químico

Mínimo de la energía de Gibbs. Cambios con la presión. Cambios con la temperatura. Ácidos y bases.

Unidad 6: Cinética de las reacciones químicas

Cinética química empírica. Tasa de una reacción. Reacciones cerca del equilibrio. Efecto de la temperatura. Reacciones en cadena. Catálisis y oscilaciones. Auto catálisis: oscilaciones y caos.

VII - Plan de Trabajos Prácticos

- 1- Entalpía, entropía y energía de Gibbs
- 2- Transiciones de fase de sustancias simples.
- 3- Mezclas simples.
- 4- Diagramas de fase de mezclas simples
- 5- Equilibrio químico.
- 6- Cinética química

VIII - Regimen de Aprobación

Para regularizar la materia se requiere aprobar dos parciales que sobre los tópicos desarrollados en las clases prácticas. En caso de no ser aprobado alguno de ellos se tomará un recuperatorio al final del cuatrimestre.

Para aprobar la asignatura se tomará un examen final escrito sobre los contenidos teóricos de la asignatura.

IX - Bibliografía Básica

- [1] Atkins; Physical Chemistry
- [2] Zemansky; Heat and Thermodynamics
- [3] Engels, Reidl, Química Física

X - Bibliografia Complementaria

[1] Lee, Sears, Turcotte; Statistical Thermodynamics

[2] Levine; Physical Chemistry

[3] Levine; Problemas de Fisicoquímica

XI - Resumen de Objetivos

- 1. Aprender a calcular magnitudes termodinámicas a partir de información experimental.
- 2. Conocer las leyes empíricas que rigen el comportamiento de las soluciones.
- 3. Comprender el equilibrio de una reacción química
- 4. Conocer las leyes que rigen la cinética de reacciones químicas.

XII - Resumen del Programa

Unidad 1: Conceptos de termodinámica

Unidad 2: Cambios de estado: transformaciones físicas de sustancias puras.

Unidad 3: Mezclas simples.

Unidad 4: Cambios de estado: transformaciones de fase de mezclas simples

Unidad 5: Equilibrio químico

XIII - Imprevistos

Unidad 6: Cinética de las reacciones químicas

WIW O	.		
XIV - O	Otros		

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA			
	Profesor Responsable		
Firma:			
Aclaración:			
Fecha:			