

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Electrónica

(Programa del año 2016)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
Sistemas de Control	Ingeniería Electrónica	702-1	2016	1° cuatrimestre
Sistemas de Control	ingemena Electronica	7/07		
		Ord.C		
Sistemas de Control	Ing.Mecatrónica	.D.	2016	1° cuatrimestre
Sistemas de Control		022/1		
		2		
		Ord.C		
Sistemas de Control	Ingeniería Electromecánica	.D.02	2016	1° cuatrimestre
		0/12		
	OrdC.			
Sistemas de Control	In annianta Elantutuian	D.N°	2016	1° cuatrimestre
Sistemas de Control	Ingeniería Electrónica	019/1		
		2		

II - Equipo Docente

Docente	Función	Cargo	Dedicación
SERRA, FEDERICO MARTIN	Prof. Responsable	P.Adj Exc	40 Hs
GONZALEZ, GUILLERMO NOEL	Responsable de Práctico	A.1ra Simp	10 Hs
HORCAJO, ELOY MIGUEL	Auxiliar de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
6 Hs	3 Hs	2 Hs	1 Hs	6 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
14/03/2016	25/06/2016	15	90	

IV - Fundamentación

Sistemas de control es un curso de cuarto año de la carrera Ingeniería Electrónica, Ingeniería Mecatrónica y de tercer año de la carrera Ingeniería Electromecánica. Básicamente comprende el estudio de los sistemas de control desde los puntos de vista clásico y moderno. Específicamente el curso prepara al alumno para realizar el modelado, análisis y diseño de sistemas de control en el dominio del tiempo, frecuencia y en el espacio de estados. Esto posibilita al alumno poder estudiar y

comprender el desempeño de sistemas físicos y a partir de esto plantear la adecuada estrategia de control para que dicho sistema cumpla con las especificaciones de diseño esperadas. Las unidades, si bien tienen una correlatividad vertical, en varios casos se trabajará en paralelo, mediante el uso de medios informáticos; los cuales facilitarán la comprensión y utilización de los conceptos aprendidos y se alternarán los fundamentos teóricos con las ejercitaciones prácticas y de laboratorio.

V - Objetivos / Resultados de Aprendizaje

El alumno que apruebe el curso deberá estar capacitado para: modelar y analizar cualquier sistema físico mediante el análisis en el dominio del tiempo, frecuencia y espacio de estados. Diseñar sistemas de control mediante técnicas en el dominio del tiempo, frecuencia y espacio de estados. Realizar la simulación de sistemas mediante el uso sistemático de software específico. Identificar en instalaciones y equipos industriales automatizados los bloques funcionales de los sistemas automáticos que intervienen. Determinar sus elementos constructivos, estructura, estrategia de control utilizada, etc. Realizar tareas de investigación en control lineal clásico y avanzado.

VI - Contenidos

Unidad N° 1: "Introducción"

Sistema de control

Componentes de un sistema de control

Ejemplos de sistemas de control

Sistemas de control en lazo abierto

Sistemas de control en lazo cerrado

Diseño y compensación de sistemas de control

Unidad N° 2: "Modelado matemático de sistemas"

Función de transferencia y de respuesta impulso

Sistemas de control automáticos

Modelado en el espacio de estados

Representación en el espacio de estados de sistemas de ecuaciones diferenciales escalares

Linealización de modelos matemáticos no lineales

Modelado matemático de sistemas eléctricos

Modelado matemático de sistemas mecánicos

Modelado matemático de sistemas de fluidos y sistemas térmicos

Unidad N° 3: "Análisis transitorio y en estado estacionario"

Sistemas de primer orden

Sistemas de segundo orden

Sistemas de orden superior

Criterio de estabilidad de Routh

Efectos de las acciones de control integral y derivativa en el comportamiento del sistema Errores en estado estacionario en los sistemas de control con realimentación unitaria

Unidad N° 4: "Análisis y diseño de sistemas de control por el método del lugar geométrico"

Gráficas del lugar de las raíces

Lugar de las raíces de sistemas con realimentación positiva

Diseño de sistemas de control mediante el método del lugar de las raíces

Compensación de adelanto

Compensación de retardo

Compensación de retardo-adelanto

Compensación paralela

Unidad N° 5: "Análisis y diseño de sistemas de control por el método de la respuesta en frecuencia"

Diagramas de Bode

Criterio de estabilidad de Nyquist

Análisis de estabilidad y estabilidad relativa

Respuesta en frecuencia en lazo cerrado de sistemas con realimentación unitaria

Determinación experimental de funciones de transferencia

Diseño de sistemas de control por el método de la respuesta en frecuencia

Compensación de adelanto

Compensación de retardo

Compensación de retardo-adelanto

Unidad N° 6: "Controladores PID y controladores PID modificados"

Reglas de Ziegler-Nichols para la sintonía de controladores PID

Diseño de controladores PID mediante el método de respuesta en frecuencia

Diseño de controladores PID mediante el método de optimización computacional Modificaciones de los esquemas de control PID

Control con dos grados de libertad

Método de asignación de ceros para mejorar las características de respuesta

Unidad N° 7: "Análisis de sistemas de control en el espacio de estados"

Representaciones en el espacio de estados de sistemas definidos por su función de transferencia Solución de la ecuación de estado invariante con el tiempo

Controlabilidad

Observabilidad

Unidad N° 8: "Diseño de sistemas de control en el espacio de estados"

Asignación de polos

Diseño de servosistemas

Observadores de estado

Diseño de sistemas reguladores con observadores

Diseño de sistemas de control con observadores

Sistema regulador óptimo cuadrático

Sistemas de control robusto

VII - Plan de Trabajos Prácticos

Resolución de problemas: Se entregará una guía de trabajos prácticos con ejercicios correspondientes a los temas desarrollados en las clases teóricas.

Los temas a desarrollar serán:

- 1 Modelado matemático de sistemas físicos
- 2 Análisis de respuesta transitoria
- 3 Análisis del lugar geométrico de las raíces
- 4 Análisis de la respuesta en frecuencia
- 5 Controladores PID y PID modificados
- 6 Análisis en el espacio de estados
- 7 Diseño de controladores en el espacio de estados

Trabajo de laboratorio: Se realizarán trabajos de laboratorio en donde se simulen y desarrollen modelos y estrategias de control para un levitador magnético y un banco de motores de CC.

VIII - Regimen de Aprobación

Régimen para alumnos regulares.

Se accede a la condición de regularización de la materia si se cumplen los siguientes requisitos:

- 1. Aprobar los dos exámenes parciales o sus respectivos recuperatorios con calificación superior o igual a 7 (siete) en una escala del 0 al 10.
- 2. Aprobar la totalidad de los trabajos prácticos de aula y laboratorio

Para aprobar el curso, el alumno será evaluado en un examen final oral sobre los temas que solicite el tribunal.

Régimen para alumnos libres.

Un alumno libre deberá rendir un examen escrito eliminatorio cuyos temas se basan en los trabajos prácticos de la asignatura. Si aprueba esta instancia el alumno será evaluado en un examen final oral sobre los temas teóricos que solicite el tribunal.

IX - Bibliografía Básica

- [1] Ogata, Katsuhiko. "Ingeniería de control moderna". 5ª ed. Pearson Prentice Hall. 2010.
- [2] Kuo, Benjamin "Sistemas de control automático". 7ª ed. Prentice-Hall. 1996.

X - Bibliografia Complementaria

- [1] Goodwin, Graebe & Salgado, Control System Design. Prentice Hall, 2001.
- [2] Nise, Norman. "Sistemas de Control para Ingeniería". 3ª ed. C.E.C.S.A. 2005.
- [3] Dorf, Richard Carl. "Sistemas modernos de control" 2ª ed. Addison-Wesley Iberoamericana. 1989.
- [4] Jagan, N. C. "Control Systems" 2ª ed. BS Publications. 2008.

XI - Resumen de Objetivos

El alumno estará capacitado para:

- 1. Identificar y modelar sistemas físicos
- 2. Analizar el comportamiento de sistemas físicos en el dominio del tiempo, frecuencia y espacio de estados.
- 3. Diseñar sistemas de control en el dominio del tiempo, frecuencia y espacio de estados.

XII - Resumen del Programa

Unidad N° 1: "Introducción"

Unidad N° 2: "Modelado matemático de sistemas"

Unidad N° 3: "Análisis transitorio y en estado estacionario"

Unidad N° 4: "Análisis y diseño de sistemas de control por el método del lugar geométrico"

Unidad N° 5: "Análisis y diseño de sistemas de control por el método de la respuesta en frecuencia"

Unidad N° 6: "Controladores PID y controladores PID modificados"

Unidad N° 7: "Análisis de sistemas de control en el espacio de estados"

Unidad N° 8: "Diseño de sistemas de control en el espacio de estados"

XIII - Imprevistos

XIV - Otros