

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas

(Programa del año 2015)

Area: Matematicas

I - Oferta Académica

Materia	Carrera	Plan Año	Período
ALGEBRA II	LIC.EN FISICA	015/0 6 2015	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
MARTINEZ, FEDERICO NICOLAS	Prof. Responsable	P.Adj Semi	20 Hs
MINI, MARIA AMELIA	Responsable de Práctico	A.1ra Exc	40 Hs
MOLINA MUNAFO, LUIS GONZALO	Responsable de Práctico	A.1ra Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	4 Hs	4 Hs	Hs	8 Hs

Tipificación	Periodo	
C - Teoria con prácticas de aula	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
10/08/2015	27/11/2015	15	112

IV - Fundamentación

El Álgebra Lineal provee a los tecnólogos e ingenieros los conocimientos necesarios para manejar y aplicar los conceptos del álgebra matricial en el planteamiento y solución de sistemas de ecuaciones y de problemas relacionados, todos ellos de habitual utilización en la actuación profesional. El álgebra lineal es una herramienta fundamental para el planteamiento y desarrollo de conceptos que permitan entender y asimilar conocimientos de otras áreas de la ingeniería y la tecnología aplicada.

V - Objetivos / Resultados de Aprendizaje

- Desarrollar el pensamiento abstracto de tipo matemático, contribuyendo así a la formación matemática del estudiante.
- Conducir al estudiante al conocimiento y aplicación de las ideas básicas del Álgebra Lineal haciendo énfasis en el análisis y consecuencias de los diferentes teoremas, ilustrando su aplicabilidad en numerosos ejemplos.
- Aplicar adecuadamente los conceptos del Álgebra Matricial y su operación en la solución de sistemas de ecuaciones lineales
- Conocer y utilizar los elementos y las técnicas del Álgebra Lineal para el trabajo con matrices, sistemas de ecuaciones, espacios vectoriales, valores y vectores propios y para la solución de problemas que involucran estos conceptos.
- Reconocer la estructura de espacio vectorial y realizar actividades de aplicación de la misma.
- Comprender el concepto de transformación lineal, su importancia y su manejo a través de matrices.

VI - Contenidos

UNIDAD 1: Determinantes

Definición. Propiedades. Desarrollo por cofactores y aplicaciones. Matriz adjunta. Inversa de una matriz. Regla de Cramer.

UNIDAD 2: Espacios vectoriales reales.

Definición de espacios vectoriales. Ejemplos. Subespacios vectoriales. Combinación lineal de vectores. Independencia lineal. Definición de conjunto de generadores de un espacio vectorial. Bases y dimensión. Espacio nulo y nulidad de una matriz. Relación entre sistemas lineales no homogéneos y sistemas homogéneos. Rango de una matriz, espacios filas y columnas. Rango y singularidad. Aplicaciones del rango a los sistemas lineales no homogéneo Coordenadas y cambio de base.

UNIDAD 3: Ortogonalidad.

Definición de conjuntos ortogonales y ortonormales en . Bases ortogonales y ortonormales Proceso de ortogonalización de Gram-Schmidt. Complementos ortogonales. Suma directa de subespacios vectoriales. Relaciones entre los espacios vectoriales fundamentales asociados con una matriz. Proyecciones y aplicaciones. Factorización QR de una matriz. Mínimos cuadrados. Mínimos cuadrados mediante factorización QR. Ajuste por mínimos cuadrados.

UNIDAD 4: Valores propios, vectores propios y diagonalización.

Definición. Polinomio característico. Espacios propios. Matrices semejantes (similares) Diagonalización. Aplicaciones. Diagonalización de matrices simétricas. Definición de forma cuadrática real. Teorema de los ejes principales. Secciones cónicas.

UNIDAD 5: Transformaciones lineales y Matrices.

Definición y ejemplos. Imagen y Núcleo de una transformación lineal. La matriz de una transformación lineal. Cambio de bases. Revisión de la diagonalización, de la semejanza y ortogonalización de matrices.

VII - Plan de Trabajos Prácticos

Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en teoría.

VIII - Regimen de Aprobación

I: Sistema de regularidad

Todos los alumnos deberán cumplir los siguientes requisitos para obtener la regularidad:

- Asistir al 80% de las clases prácticas.
- Se tomarán dos evaluaciones parciales. Cada evaluación parcial tendrá una recuperación. Parciales y recuperaciones se deben aprobar con calificación no inferior al 6 sobre un total de 10.
- Los alumnos que hayan aprobado una de las dos evaluaciones parciales (o su respectiva recuperación) y habiendo asistido al 70% de las clases prácticas, no hayan conseguido la regularidad podrán acceder a una recuperación general.
- Los alumnos que hayan obtenido la condición de regular, aprobarán la materia a través de un examen final en las fechas que el calendario universitario prevé para esa actividad.

II: Sistema de promoción

Los alumnos que deseen optar por aprobar la materia sin rendir examen final (promoción) deberán cumplir los siguientes requisitos:

- Asistir al 80% de las clases prácticas.
- Obtener como nota de las evaluaciones parciales (o su primera recuperación) una calificación no inferior a 7.
- Si el alumno desea levantar la nota de un parcial, puede volver a rendirlo en su primera instancia de recuperación. Se tomará esta última como nota definitiva de dicho parcial.
- Aprobar con calificación no inferior a 7 un examen integrador de carácter teórico. Para tener derecho a rendirlo, el alumno debe tener previamente aprobadas las asignaturas correlativas correspondientes.
- La nota final de la materia surgirá del promedio P de las notas definitivas de los dos parciales y la nota I obtenida en la evaluación integradora. Será I, si ésta es superior al promedio P. Caso contrario, la calificación final será (P+I)/2.

III.- Para alumnos libres:

La aprobación de la materia se obtendrá rindiendo un examen práctico escrito y, en caso de aprobar éste, deberá rendir en

IX - Bibliografía Básica

- [1] Algebra Lineal. B. Kolman and D. Hill. Prentice Hall Continental Octava edición (2006)
- [2] Algebra Lineal con aplicaciones. Steven León. Compañía Editorial Continental, S.A. de C.V. (México). Tercera edición,

X - Bibliografia Complementaria

- [1] Introducción al Algebra Lineal. Howard Anton. Ed.Limusa
- [2] Precalculo, Michael Sullivan, Prentice Hall, Cuarta edición (1997)

XI - Resumen de Objetivos

- Desarrollar el pensamiento abstracto de tipo matemático, contribuyendo así a la formación matemática del estudiante.
- Conducir al estudiante al conocimiento y aplicación de las ideas básicas del Álgebra Lineal haciendo énfasis en el análisis y consecuencias de los diferentes teoremas, ilustrando su aplicabilidad en numerosos ejemplos.
- Aplicar adecuadamente los conceptos del Álgebra Matricial y su operación en la solución de sistemas de ecuaciones lineales.
- Conocer y utilizar los elementos y las técnicas del Álgebra Lineal para el trabajo con matrices, sistemas de ecuaciones, espacios vectoriales, valores y vectores propios y para la solución de problemas que involucran estos conceptos.
- Reconocer la estructura de espacio vectorial y realizar actividades de aplicación de la misma.
- Comprender el concepto de transformación lineal, su importancia y su manejo a través de matrices.

XII - Resumen del Programa

UNIDAD 1: Determinantes

UNIDAD 2: Espacios vectoriales reales.

UNIDAD 3: Ortogonalidad.

UNIDAD 4: Valores propios, vectores propios y diagonalización.

UNIDAD 5: Transformaciones lineales y Matrices.

XIII - Imprevistos

XIV - Otros