

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica Area: Qca Organica

(Programa del año 2015) (Programa en trámite de aprobación) (Presentado el 18/09/2015 11:16:01)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
QUIMICA ORGANICA I	PROF.EN QUIMICA	6/04	2015	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
BORKOWSKI, EDUARDO JORGE	Prof. Responsable	P.Asoc Exc	40 Hs
AGUIRRE PRANZONI, CELESTE BEAT	Responsable de Práctico	JTP Exc	40 Hs
JUAN HIKAWCZUK, VIRGINIA ELENA	Auxiliar de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
5 Hs	Hs	Hs	3 Hs	8 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
16/03/2015	26/06/2015	15	130

IV - Fundamentación

EL SENTIDO DEL ESTUDIO DE QUIMICA ORGANICA EN LA FORMACION PROFESIONAL

La Química es el estudio de la materia y sus transformaciones. La Química Orgánica es aquella parte de la Química que original- mente se ocupaba de las materias vivas. Aunque esta definición resulta muy limitada en la actualidad, no cabe duda que la vida como fenómeno es, tal vez, el objeto de estudio mas interesante para la humanidad y puede ser estudiada desde la perspectiva de la química del Carbono y sus compuestos, ya que los componentes esenciales de la vida: aminoácidos, proteínas, nucleótidos, ácidos nucleicos, carbohidratos, etc., son precisamente compuestos principalmente de carbono. Dicho esto sin olvidar que las prendas que vestimos, lo que comemos, los muebles que utilizamos, las pinturas, la nafta que sirve para movilizarnos, los fármacos, los plásticos, entre muchas otras sustancias, como algunos contaminantes, tienen también compuestos orgánicos. El conocimiento de la Química Orgánica es pues un componente esencial de la formación de un Licenciado en Química o de un Profesor en Química, si consideramos que la formación de un profesional apunta a dotarlo de conocimientos que le ayuden a mejorar la calidad de vida de toda la humanidad, en las distintas formas que preveen las incumbencias profesionales.

V - Objetivos / Resultados de Aprendizaje

Los alumnos deberán manejar, al final del curso, los conceptos básicos sobre: Estructura electrónica, enlace y propiedades. Las moléculas orgánicas y sus reacciones. Alcanos y cicloalcanos. Estereoisomería. Introducción al uso de la espectroscopia en Quimica Orgánica. Alquenos. Sistemas conjugados. Alquinos. Mecanismos de reacción: Reacciones de sustitución nucleófila alifática y de eliminación. Haluros de alquilo y compuestos organometálicos, Benceno y aromaticidad.

Sustituciones aromáticas. Alcoholes. Eteres. Aldehidos y cetonas. Acidos carboxilicos y derivados. Fenoles y quinonas. Aminas y sales de diazonio.

VI - Contenidos

TEMA N°1.- ESTRUCTURA ELECTRONICA, ENLACES Y PROPIEDADES

Revisión de teorías del enlace químico. Enlace en moléculas orgánicas. Enlace covalente. Geometría molecular. Moléculas polares y no polares. Carga formal. Teoría de la resonancia: postulados y condiciones. Orbitales atómicos y moleculares. Estructura y propiedades físicas. Hidrocarburos: generalidades, enlaces simples y múltiples. Carbocationes: formación y estabilidades relativas. Sistemas conjugados. Efectos derivados de desplazamientos electrónicos: características -

TEMA N° 2.- LAS MOLECULAS ORGANICAS Y SUS REACCIONES

Grupos funcionales y series homólogas, presentación. Nomenclatura. Introducción a los distintos tipos de reacciones. Equilibrios, cinética, mecanismos y perfiles de reacción. Postulado de Hammond. Acidos y bases. Reacciones en medio acuoso y no acuoso.-

TEMA N° 3.- BENCENO Y AROMATICIDAD

El benceno: estructura, modelo de Kekulé; propiedades asociadas al carácter aromático, resonancia. Descripción de benceno según Teoría de Orbitales Moleculares. Regla de Hückel: bases electrónicas. Iones aromáticos. Compuestos aromáticos bencenoides y no bencenoides. Hidrocarburos aromáticos polinucleares. Arenos. Carbocationes y radicales bencílicos, estabilidad, reactividad.

TEMA Nº 4.- ALCANOS Y CICLOALCANOS I: ISOMERIA Y ANALISIS CONFORMA-CIONAL

Confórmeros e isómeros: concepto. Isomería: distintos tipos. Análisis conformacional de etano y n butano. Estructura de cicloalcanos, análisis conformacional. Cicloalcanos bisustituidos, isomería, análisis conformacional. Compuestos bicíclicos, configuraciones y conformaciones en el sistema decalina.

TEMA N° 5.- ESTEREOISOMERIA

Quiralidad. Actividad óptica y enantiómeros. Configuración R,S. Racematos. Compuestos con más de un centro quiral, diasteroisómeros. Estereoisomería en compuestos cíclicos. Reacciones químicas y estereoisomería. Resolución de mezclas racémicas por métodos cinéticos y biológicos. Isomería en olefinas, nomenclatura E,Z. Determinación de sistemas homotópicos, enantiotópicos y diasterotópicos; propiedades físicas y químicas asociadas.

TEMA N° 6.- INTRODUCCION AL USO DE LA ESPECTROSCOPIA EN QUIMICA ORGANICA

El espectro electromagnético. Espectroscopía de ultravioleta y visible: transiciones electrónicas. Coeficiente de extinción. Grupos cromóforos. Espectroscopía de infrarrojo: bases físicas, frecuencia de grupo. Aspectos experimentales. Interpretación de espectros. Espectroscopía de Resonancia Magnética Nuclear: bases físicas, aspectos experimentales. Interpretación de espectros. Espectrometría de masas: principios, fragmentación, interpretación de espectros.-

TEMA N° 7.- ALCANOS Y CICLOALCANOS II. Mecanismos radicalarios

Energía de disociación de enlaces, reacciones homolíticas; radicales libres: estabilidades relativas. Reactividad de halógenos frente a metano, cambios de energía, mecanismo. Halogenación de alcanos superiores. Reactividad y selectividad. Pirólisis de alcanos; combustión. Nitroalcanos. Síntesis de alcanos y cicloalcanos.-

TEMA N° 8.- REACCIONES DE SUSTITUCION NUCLEOFILA ALIFATICA (SN) Y DE ELIMINACION (E). Halogenuros de alquilo y compuestos organometálicos. Alcoholes y éteres. Tioles y tioéteres.

SN2: mecanismo, cinética, estereoquímica; efecto de la naturaleza del sustrato, nucleófilos, grupos salientes y solventes. E2: mecanismo, cinética, efecto isotópico, competencia con SN2, regioselectividad, naturaleza de la base, estereoquímica. Reacciones de eliminación y conformación en derivados de ciclohexano. SN1: mecanismo, cinética, estabilidad de intermedios, reordenamientos, efecto del solvente, estereoquímica. Competencia entre SN y E . SNi. Familias de compuestos relacionados con este tipo de reacciones: Halogenuros de alquilo y compuestos organometálicos. Alcoholes. Eteres. Tioles y tioéteres.

TEMA Nº 9: ADICIONES A ENLACES MULTIPLES. Alquenos. Alquinos. Compuestos carbonílicos: aldehídos y

cetonas, ácidos carboxílicos y derivados

Adición Electrofílica a través de intermedios cíclicos y de carbocationes. Estereoquímica: pares eritro y treo-dl. Regioquímica. Adición nucleofílica. Adición por radicales libres. Mecanismos cíclicos. Adición a sistemas conjugados. Adición a enlaces múltiples C-Heteroátomo. Mecanismo general, estereoquímica. Adición nucleófila de reactivos organometálicos, Catálisis ácida y básica. Familias de compuestos relacionados con este tipo de reacciones: Alquenos. Alquinos. Compuestos carbonílicos: aldehídos y cetonas, ácidos carboxílicos y derivados. Sustitución acil – nucleófila. Enoles y enolatos: Adición de Michael. Síntesis del éster aceto acético. Síntesis malónica. Condensacion de Claisen.

TEMA N° 10: SUSTITUCIONES AROMATICAS. Hidrocarburos aromáticos. Fenoles y quinonas.

Sustitución aromática electrófila: mecanismo general, reacciones más importantes. Factores que influyen en la velocidad y orientación, factores parciales de velocidad. Utilidad sintética. Sustitución aromática nucleófila: mecanismos unimoleculares y bimoleculares. Mecanismo del bencino. Factores que influyen en mecanismo y velocidad. Utilidad sintética. Familias de compuestos relacionados con este tipo de reacciones: Hidrocarburos aromáticos. Fenoles y quinonas.

TEMA N° 11.- AMINAS Y SALES DE DIAZONIO

Estructura, propiedades, basicidad de aminas. Métodos de obtención, reacciones. Reacciones de copulación de sales de diazonio con aminas y fenoles. Compuestos azoicos.-

VII - Plan de Trabajos Prácticos

A) Trabajos Prácticos de Laboratorio (duración: 3 horas):

- 1- Normas de Higiene y Seguridad en el Laboratorio
- 2- Obtención de bromuro de etilo. Propiedades y reacciones.-
- 3- Cromatografía en capa delgada y columna. Separación de colesterol y acetato de colesterol.-
- 4- Obtención de acetileno. Propiedades y reacciones.-
- 5- Obtención de p-nitro y p-bromoacetanilida.
- 6- Obtención de etanal. Propiedades y reacciones.-
- 7- Aminas. Obtención de acetanilida. Propiedades y reacciones.-

Estos trabajos prácticos podrán ser reemplazados de acuerdo con la disponibilidad de reactivos u otras contingencias y serán comunicados al comienzo de la cursada de la asignatura.

B) Trabajos Prácticos de Aula

Los mismos consisten en la resolución de ejercicios y problemas relacionados con el desarrollo teórico de la asignatura. El número de ejercicios es de ciento veinte.

VIII - Regimen de Aprobación

- 1. La materia consta de un régimen promocional sin examen final.
- 2. Se toman 2 (dos) evaluaciones parciales teórico prácticas que se califican en una escala de 0 a 10:

1er parcial: Temas 1- 6 2do parcial: Temas 6 – 11

- 1. Para promocionar la materia se requiere una puntuación mínima de 7 (siete) puntos en cada uno de los parciales.
- 2. Para aprobar los parciales se requiere una puntuación mínima de 4 (cuatro) puntos.
- 3. Los alumnos disponen de 2 (dos) recuperaciones por cada parcial (4 en total). No existen recuperaciones adicionales para alumnos que presenten certificados de trabajo. Las recuperaciones pueden usarse para promocionar la materia.

- 4. Las clases teórico prácticas son obligatorias. Se requiere para su aprobación una asistencia mínima del 80%.
- 5. Los trabajos prácticos de laboratorio son obligatorios. Se requiere la aprobación del 100% de los mismos. Se requiere aprobar un cuestionario previo y el TP en sí.
- 6. Los alumnos que no acceden a la promoción de la materia deben aprobarla por examen final.
- 7. Puede rendirse la materia en forma libre. El examen libre consta de una parte escrita con preguntas sobre temas de Practicos de Laboratorio y Aula, y de un Examen Oral sobre dos temas elegidos por sorteo entre los temas del programa.

IX - Bibliografía Básica

- [1] Loudon M. G.; Organic Chemistry, Addison Wesley Publishing Company.-
- [2] Mc Murry J.; Química Organica, 3a. Ed. Grupo Editorial Iberoamérica, 1993.
- [3] Mc Murry J.; Química Organica, 5a. Ed. International Thomson Editores, 2001.
- [4] Vollhardt, K.P.C. y Schore N.E., Química Orgánica. Estructura y función; 3° Ed; Ed. Omega, 2000
- [5] Solomons G. T. W.; Química Orgánica, Ed. Limusa.-
- [6] Morrison y Boyd; Química Orgánica, 5 Ed. Addison, Wesley & Longman, 1998..-
- [7] Streitwieser A. y Heathcock C. H.; Química Orgánica, 3er. Ed., Interamericana Mc. Graw Hill.-
- [8] Allinger, Cava, De Jongh, Johnson, Level y Stevens; Química Orgánica, Tomos 1 y 2; Ed. Reverté.-

X - Bibliografia Complementaria

- [1] March; Advanced Organic Chemistry; Ed. Mc. Graw Hill.-
- [2] Carey, F.A. & Sundberg, R.J.; Advanced Organic Chemistry, 3° Ed., Plenum Press, 1977.
- [3] Pérez A. Ossorio; Mecanismos de las Reacciones Orgánicas, Tomos 1 y 2; Ed. Alhambra.-
- [4] Sykes P.; Mecanismos de Reacción en Química Orgánica; Ed. Reverté.-
- [5] Eliel; Elementos de Estereoquímica; Ed. Limusa.-

XI - Resumen de Objetivos

Los alumnos deberán manejar, al final del curso, los conceptos básicos sobre: Estructura electrónica, enlace y propiedades. Las moléculas orgánicas y sus reacciones. Alcanos y cicloalcanos. Estereoisomería. Introducción al uso de la espectroscopia en Quimica Orgánica. Alquenos. Sistemas conjugados. Alquinos. Mecanismos de reacción: Reacciones de sustitución nucleófila alifática y de eliminación. Haluros de alquilo y compuestos organometálicos, Benceno y aromaticidad. Sustituciones aromáticas. Alcoholes. Eteres. Aldehidos y cetonas. Acidos carboxilicos y derivados. Fenoles y quinonas. Aminas y sales de diazonio.

XII - Resumen del Programa

A) Temas

TEMA N°1.- ESTRUCTURA ELECTRONICA, ENLACES Y PROPIEDADES

TEMA N° 2.- LAS MOLECULAS ORGANICAS Y SUS REACCIONES

TEMA N° 3.- BENCENO Y AROMATICIDAD

TEMA Nº 4.- ALCANOS Y CICLOALCANOS I: ISOMERIA Y ANALISIS CONFORMACIONAL

TEMA N° 5.- ESTEREOISOMERIA

TEMA Nº 6.- INTRODUCCION AL USO DE LA ESPECTROSCOPIA EN QUIMICA ORGANICA

TEMA Nº 7.- ALCANOS Y CICLOALCANOS II. Mecanismos radicalarios

TEMA Nº 8.- REACCIONES DE SUSTITUCION NUCLEOFILA ALIFATICA (SN) Y DE ELIMINACION (E).

Halogenuros de alquilo y compuestos organometálicos. Alcoholes y éteres. Tioles y tioéteres.

TEMA Nº 9: ADICIONES A ENLACES MULTIPLES. Alquenos. Alquinos. Compuestos carbonílicos: aldehídos y cetonas, ácidos carboxílicos y derivados

TEMA N° 10: SUSTITUCIONES AROMATICAS. Hidrocarburos aromáticos. Fenoles y quinonas.

TEMA Nº 11.- AMINAS Y SALES DE DIAZONIO

- B) Trabajos Prácticos de Laboratorio:
- C) Trabajos Prácticos de Aula

XIII - Imprevistos

XIV - Otros

Fecha:

Las 10 hs. de crédito semanal restantes no están distribuidas uniformemente durante el cuatrimestre y se utilizan para consultas adicionales o bien, para finalización de Trabajos Prácticos de Laboratorio.

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		