

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Agropecuarias Area: Recursos Naturales e Ingeniería Rural

(Programa del año 2014)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
		11/04		
Agrometeorología	Ingeniería Agronómica	-25/1	2014	1° cuatrimestre
		2		

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ORTA, FRANCISCO JULIO	Prof. Responsable	P.Asoc Exc	40 Hs
ROJAS, ELIZABETH	Auxiliar de Práctico	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	acticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total	
Hs	3 Hs	2 Hs	1 Hs	6 Hs

Tipificación	Periodo	
E - Teoria con prácticas de aula, laboratorio y campo	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
12/03/2014	19/06/2014	14	84

IV - Fundamentación

La Agrometeorología constituye una rama de las ciencias meteorológicas de importancia relevante para abordar problemas que presenta la humanidad en la actualidad y otros que ya se proveen en las próximas décadas. La importancia de éste curso se basa en sus contenidos orientados al conocimiento de los procesos atmosféricos-biológicos, y la generación de datos e información climática aplicada a estudios interdisciplinarios.

Para el Ingeniero Agrónomo, la formación en esta temática, le significará una contribución importante en su actividad profesional, y también por su intermedio lograr una sociedad más preparada para el desarrollo y mantenimiento de mejores condiciones de vida, para el presente y las futuras generaciones. En ese sentido se debe realizar un esfuerzo para educar la comunidad agrícola. Además, con la utilización de datos climáticos y agrometeorológicos se logre mejorar la eficiencia de la producción agropecuaria, cuidando a la vez los recursos naturales

V - Objetivos / Resultados de Aprendizaje

Se intenta lograr una formación para el adecuado manejo de las interacciones entre los componentes meteorológicos-climáticos de la biósfera y la respuesta de los cultivos, animales, plagas, y parásitos. Lograr conocimiento de los componentes meteorológicos/climáticos de la biosfera, sus fundamentos teóricos, comportamientos, los mecanismos de control y de las disponibilidades climáticas geográficas para la agricultura.

A través del programa desarrollado se pretende que el alumno alcance los siguientes objetivos:

- 1)Interprete y cuantifique los elementos del clima, para aplicar esos conocimientos a las ciencias agropecuarias.
- 2)Descubra la íntima relación entre los elementos y factores del clima con las distintas zonas agroclimáticas.
- 3) Conozca integralmente las principales adversidades agrícolas del tiempo y del clima y las distintas alternativas de lucha.
- 4) Tenga un conocimiento integral sobre los problemas que ocasiona el impacto de la actividad humana sobre el clima.

VI - Contenidos

Cred. Horario: 84 * C.H. Teoría: 49 * C.H. Práctico: 35

UNIDAD I. INTRODUCCIÓN. EL TIEMPO, EL CLIMA.

I. La ciencia meteorológica: objetivos, ubicación, divisiones, agrometeorología, meteorología y climatología. La Organización Meteorológica Mundial.

La meteorología agrícola: objetivos, ubicación, relación con las ciencias meteorológicas y agronómicas. Su desarrollo en el mundo y en el país. La bibliografía meteorológica y agrometeorológica.

II. Elementos de climatología y meteorología

Generalidades. Tiempo y clima: concepto, definiciones, concepto del tiempo y clima: elementos y factores.

El medio físico: a) La atmósfera, composición, características, estratificación. b) El suelo: composición, características, el clima del suelo.

UNIDAD 2. CALENTAMIENTO DE LA TIERRA Y ATMÓSFERA.

I. La forma de transferencia de calor en el medio: radiación, convección, y difusión turbulenta, advección, (leyes de Plank, Kirchoff, Stephan-Boltzman, Wien). Los cambios físicos del agua: el calor latente.

II. Los componentes del clima.

Radiación solar o de onda corta: característica, poder calórico. Constante solar. Efectos modificadores de la atmósfera. Leyes de Bouguer y del Coseno. Variación del goce de radiación según latitud y época del año: causas, clima solar.

Radiaciones terrestres y de la atmósfera o de ondas largas: características y modificaciones, radiaciones efectivas.

Balance diurno y nocturno de radiación: la radiación neta. Medición de la radiación: pirheliómetros, piranógrafos, balancímetros, fotómetros, etc. Registradores, cómputos de valores de radiación. Fórmulas estimativas de radiación.

UNIDAD 3.TEMPERATURA DEL SUELO Y DEL AIRE

I. La temperatura del suelo. El intercambio de calor a través de la superficie activa: el balance calórico.

Programa Analítico 12(continuación)

Transmisión del calor dentro del suelo: factores y constantes físicas relacionadas. Régimen térmico del suelo. Variación diaria y anual de la temperatura del suelo con la profundidad. Leyes. Influencia del estado, labores, y coberturas del suelo, su temperatura y el balance calórico.

Medición de la temperatura del suelo: geotermómetros y geotermógrafos: tipos ventajas, instalación.

Cómputos y representaciones gráficas de geotemperatura.

II. La temperatura del aire. El intercambio de calor suelo-aire. Los procesos de calentamiento y enfriamiento del aire, con y sin adición o cesión de calor. Los gradientes térmicos y la estabilidad del aire. Inversión térmica.

Caracterización climática de la temperatura del aire. Variación diaria de la temperatura: temperaturas extremas, medias, media diaria pentádica, semanal, mensual, estacional, anual. Temperaturas normales. Amplitud térmica diaria: regular y periódica, causas. Variación interdiurna. Nictotemperatura. Variación anual de la temperatura: meses más fríos y calurosos del año. Amplitud térmica anual: causas. Continentalidad climática. Extremos térmicos medios y absolutos anuales. Distribución geográfica de la temperatura del aire sobre la superficie de la tierra: causas. Isotermas. Reducción de temperaturas al nivel del mar. Isotermas anuales. Ecuador térmico, anomalías térmicas, isotermas de enero y julio. Medición de la temperatura del aire: termómetros líquidos, de deformación, eléctricos. Registradores. Instalaciones. Cómputos de temperatura.

UNIDAD 4. PRESIÓN Y VIENTOS

I. Presión atmosférica. Importancia y medición. Variación diaria y anual de la presión: distribución vertical; reducción al nivel del mar. Isobaras. Gradiente barométrico. Centros de presión. Distribución geográfica de la presión: isobaras de enero y julio, anuales.

Instrumental de presión: barómetros y barógrafos.

Vientos. Causas del viento. Dirección, causas y fuerza del viento. Desviación del viento. Los vientos y los centros ciclónicos y anticiclónicos. Variación diaria de la velocidad.

Instrumental de viento: veletas: anemómetros y anemógrafos.

UNIDAD 5. CIRCULACION ATMOSFÉRICA

I. Circulación general de la atmósfera: dirección predominante de los vientos sobre la superficie terrestre. Circulaciones especiales: estacionales y locales.Brisa de mar y de tierra, de montaña y de valle. Variación diarias de la velocidad. II. La circulación general, las precipitaciones y corrientes marinas.

Fenómeno del Niño/ Oscilación del sur, concepto. Teleconexiones Efectos meteorológicos, económico y sociales.

UNIDAD 6. HUMEDAD DEL AIRE

I. La humedad del aire. El vapor de agua en la atmósfera: importancia, efectos, medición y formas de expresión. Diagrama de saturación. Variación diaria anual y zonal de la humedad del aire. Gradiente vertical de humedad.

Instrumental para medir la humedad del aire. Psicrómetros De August y Assman. Higrómetros e higrógrafos. Cómputos. Tablas psicrométricas.

II. Condensación del vapor de agua del aire. Los núcleos que provocan condensación. Núcleos de condensación y sublimación. Nubes: características y clasificación. Nubosidad y heliofanía. Variación diaria anual y zonal de la nubosidad. Nieblas, neblinas, rocío, causas, características, importancia agrícola. Instrumental: heliofanógrafos, determinación de la nubosidad, drosómetros, drosógrafos.

UNIDAD 7. PRECIPITACION

I. Precipitación: causas, mecanismo. Inestabilidad coloidal de las nubes. Teorías de la precipitación.

Clasificación de los hidrometeoros. Precipitación y tipos de nubes. Provocación artificial de la precipitación. Clarificaciones de la precipitación según origen, distribución geográfica. Isohietas. Precipitaciones en Villa Mercedes. Isohietas de la provincia de San Luis.

Intensidad, régimen de precipitaciones. Coeficiente Pluviométrico de Angot. Días de lluvia. Precipitación, granizo, nieve. Instrumental de precipitación: pluviómetro, pluviógrafo, nivómetro, uso de radar. Cómputos y representaciones gráficas.

UNIDAD 8. MASAS DE AIRE, CORRIENTES MARINAS, PRONÓSTICO DEL TIEMPO.

- I. Masas de aire: orígenes, características, evolución y clasificación.
- II. Frentes fríos y calientes: características.Corrientes marinas. Principales circulaciones oceánicas y sus efectos climáticos. Pronósticos

UNIDAD 9. EVAPORACION, EVAPOTRANSPIRACION, HUMEDAD DEL SUELO.

- I. Evaporación: concepto, causas, factores. Evaporación real y potencial. Medida y estimación de la evaporación. Efecto oasis. Evapotranspiración potencial: fórmulas de Penman, Thornthwaite, Papadakis, (aplicaciones y limitaciones), otras fórmulas. Instrumental de evaporación y evapotranspiración: evaporímetros, atmómetros, tanques, lisímetros, evaporímetros, (Thornthwaite y modificados)
- II. Humedad del suelo. El balance hidrológico del suelo: elementos y fórmulas. El almacenaje de agua en el suelo: constantes físicas del suelo en relación con el almacenaje. Tipo y movilidad del agua edáfica. La medición periódica continuada del grado de humedad del suelo: métodos de extracción de muestras, bloques porosos, resistencia eléctrica, tensiométrico, y métodos modernos (neutrones, rayos gama).

Cálculo de balance hidrológico con elementos meteorológicos. Ajustes y aplicaciones.

UNIDAD 10. CLIMA GLOBAL, VARIABILIDAD Y CAMBIO CLIMATICO

- I. Macro, meso, y microclima. Clima regional y local. El clima de campo. Topoclima. Concepto y factores determinantes y características de cada una. Metodología. Variación de los principales elementos: radiación, temperatura, humedad del aire, viento) en condiciones meso y microclimáticas.
- II. La observación del macroclima: categorías, observaciones, instalaciones, y planes de labor de las estaciones climáticas. Estaciones móviles.

La descripción del clima. Representación numérica y gráfica de los elementos del clima. Las estadísticas climatológicas. Climogramas. Cartas y Atlas climáticas. Sistematización de datos para computación. Modelos agro climáticos, características, tipos.

III. La clasificación del clima. Posibilidad y utilidad de clasificar los climas. Distintos tipos de clasificaciones Koppen (1931) y C.W. Thornthwaite (1948).

IV. Cambio climático, causas, efectos. Sus implicancias para la República Argentina y la Provincia de San Luís.

UNIDAD 11.CLIMA ARGENTINO Y SUS CONSECUENCIAS AGROPECUARIAS.

- I. Principales causas determinantes del clima argentino: latitud, continentalidad, relieve del suelo, y vegetación, sistemas báricos, corrientes marinas.
- II. Características principales del clima argentino: régimen de radiación solar. Régimen térmico. Características térmicas del verano e invierno argentino y sus repercusiones agropecuarias. El régimen de heladas y sus consecuencias agrícolas. Régimen pluvial, distintas regiones. Balance hídrico y sus consecuencias. Condiciones y zonas de aridez y semiaridez.

Estados típicos del tiempo en la Rep. Argentina: sudestada, pampero, viento zonda, viento norte.

III. El clima argentino según las clasificaciones de Koeppen, Thornthwaite. Regiones .fitogeográficas de la Pcia de San Luis. Aptitud del clima argentino para los distintos cultivos y razas ganaderas. Tipos agroclimáticos de algunos cultivos del país.

UNIDAD 12. EL CLIMA Y LOS FENOMENOS PERIÓDICOS EN PLANTAS Y ANIMALES.

- I. Fenología: definición y campo de acción. Relación con otras disciplinas biológicas. Desarrollo de la fenología en el mundo y país. División de la fenología: fenología agrícola y ganadera.
- II. Los fenómenos periódicos en plantas y animales. Diferencia entre crecimiento y desarrollo. Fases visibles y no visibles. Fases fenológicas de algunos cultivos agrícolas. Fases fenológicas de algunas especies del pastizal natural de la Pcia de San Luis. Fases fenológicas de animales. Intercepción fenológica.
- III. Métodos de observación fenológica. Selección del material observacional y fases a observar. Fenoestación. Observación en plantas y cultivos herbáceos y arbóreos. Registro fenológicos integral de Ledesma. Observación de plagas, enfermedades y malezas. Correlación fenológica.
- IV. Información fenológica. Boletines fenológicos. Cartas fenológicas. Isofenas. Cartas de siembra y cosecha. Ley bioclimática de Hopkins. Espectros fenológicos. Calendario fenológico. Caracterización fenológica del clima. Observaciones biológicas cuantitativas (fenometría), cuali- cuantitativas en plantas y animales.

UNIDAD 13. LAS EXIGENCIAS Y TOLERANCIAS METEOROLÓGICAS Y CLIMÁTICAS DE LOS CULTIVOS.

- I. La Bioclimatología Agrícola. Las exigencias y tolerancias con relación a las fases y subperíodos. EL proceso estadial de Lisenko. Periodos críticos y de latencia. Métodos de investigación bioclimática: ensayos geográficos y de siembras continuadas periódicas. Ensayos de clima controlado, cámara climática, fitotrones. Caracterización de las exigencias por índices bioclimáticos. Equivalentes meteorológicos de Azzi.
- II. La temperatura como factor bioclimático en el crecimiento y desarrollo de los cultivos. La constante térmica: métodos de cálculo: directo, exponencial, residual, y termofisiológico. Validez de la constante térmica. Exigencias de las plantas en bajas temperaturas: las " horas de frío". El termoestadio de los cereales: vernalización. Las horas de frío y los frutales de hojas caducas: Acción bioclimática de la amplitud térmica anual y diaria: termoperiodismo anual, diario y asincrónico. Temperaturas del día y la noche.
- III. La duración del día como factor bioclimático. Fotoperiodismo. Plantas a día corto, largo, indiferentes (nuevos conceptos). Exigencias y clasificación de las plantas en relación con la variación anual del fotoperíodo. Acción combinada de duración del día y sumas térmicas e el índice heliotérmico, unidades fototérmicas.
- IV. Principales características bioclimáticas de los cultivos anuales, estivales, anuales invernales, de media estación, peremnes crió filos, perennes termófilos. Exigencias y tolerancias de cada grupo.

UNIDAD 14. EL TIEMPO Y EL CLIMA SOBRE PLANTAS Y ANIMALES DOMESTICOS Y LAS PLANTAS.

- I. Las condiciones meteorológicas de tiempo y clima de las plagas (enfermedades y parásitos) de los cultivos. Tipos de relación tiempo- enfermedad, métodos de estudio.
- II. El tiempo, el clima y los animales de explotación

económica. Bioclimatología animal. Influencia de las condiciones meteorológicas sobre el crecimiento, desarrollo, producción y procreación de los animales. Influencia del clima en los parásitos y enfermedades de los animales.

UNIDAD 15. PRINCIPALES ADVERSIDADES AGRICOLAS DEL TIEMPO Y DEL CLIMA.

I. Las heladas y la agricultura. Proceso meteorológico de la helada y factores concurrentes. Tipos de heladas: de advección, de radiación, y mixtas. Heladas blancas y negras. Ocurrencia. Fechas medias y extremas de primeras y últimas heladas. Periodo libre de heladas. Intensidad, frecuencia, y probabilidades. Peligrosidad de las heladas: índices. Heladas en el área de

Villa Mercedes y la Pcia de San Luís.

II. Protección de los cultivos contra el daño por heladas. Métodos indirectos, ubicación de especies, elección de especies, variedades y época de cultivo, y prácticas culturales, control del drenaje del aire frío etc.

Métodos directos de lucha: cubiertas, nieblas, y humos artificiales, calentamiento y remoción del aire, riego de inundación y aspersión, aspectos técnicos y económicos de cada método.

III. Las sequías y la agricultura. Concepto meteorológico y agrometeorológico de sequía. Tipos de sequía. Caracterización. Formas de lucha contra la sequía en zonas semiáridas.

- IV. Viento y erosión. Protección mediante cercos y cortinas rompevientos: efecto de las mismas sobre el viento y los elementos del microclima del socaire. Grado de protección según tipo y características de las cortinas. Desmonte y sus efectos sobre el clima.
- V. El granizo y la agricultura. Luchas granicera: resultados y estado actual de las experiencias. Prevención y lucha contra incendios en campos naturales. El seguro agrícola en sus aspectos climáticos. El seguro contra granizo en San Luis y la República Argentina.

UNIDAD 16 CARACTERIZACION AGROCLIMATICA.

- I. La observación agrometeorológica: requisitos, categorías, tipos, instrumental de la estación agrometeorológica. Descripción agroclimática: A) parámetros e índices agroclimáticos. B) cartas y representaciones agroclimáticas
- II. El agroclima. Relevamiento agroecológico de De Fina por medio de plantas índices.
- III. Clasificaciones agroclimáticas. Clasificaciones generales: Papadakis y De Fina. Clasificaciones especiales. UNIDAD 17 ASISTENCIA Y SERVICIOS AGROMETEOROLOGICOS.
- I. Servicios agrometeorológicos: fines, funciones, ejemplos. Información agrometeorológica. Boletines agrometeorológicos.
- II. Previsiones agrometeorológicas. Pronósticos meteorológicos de utilización agrícola. Características y plazos de los pronósticos. Elementos del pronóstico. Pronósticos agrometeorológicos propiamente dichos. Pronósticos fenológicos.

UNIDAD 18. EL CAMBIO CLIMATICO Y LA AGRICULTURA.

I. Cambio climático y sus impactos en la agricultura.

Modernas tecnologías de aplicación en agro meteorología.

- II. Sensores remotos, principios, tipos de sensores y vehículos. Aplicación.
- III. Modelos. Concepto. Tipos, Descripción.

VII - Plan de Trabajos Prácticos

La Observación Meteorológica, formas, método de observación. Visita a una Estación Agrometeorológica.

- 2- Radiación Solar. Flujos. Balance. Cálculo de la radiación recibida según Black y Penman. Instrumental. Duración del día. Cálculo.
- 3- Temperatura del suelo y del aire. Leyes de Argot. Temperatura del aire. Instrumental. Cálculo de temperaturas medias en localidades sin registro.
- 4- Presión atmosférica Vientos. Representación gráfica. Instrumental.
- 5- Humedad atmosférica. Formas de expresión. Importancia del vapor de agua. precipitaciones. Medición de lluvia, representaciones gráficas. Resolución de problemas.
- 6- Evaporación y Evapotranspiración. Conceptos. Evapotranspiración real (ETR) y Evapotranspiración potencial (ETP). Factores que afectan la ETP. Cálculo según métodos de Thornthwaite y Penman. Otros métodos, ventajas y desventajas.
- 7- Balance hidrológico. Concepto. La infiltración y retención del agua en el suelo. Concepto y cálculo de pérdida. Potencial de agua acumulada, almacenaje, variación de agua almacenada, Evapotranspiración real, exceso y deficiencia de humedad.
- 8- Balance hidrológico mensual de zonas secas. Cálculo y representación gráfica de los Balances hidrológicos mensuales.
- 9- Clasificaciones climáticas y Agroclimáticas. Clasificación de Koppen, Thornthwaite. De Fina.Papadakis. Regiones agroclimáticas. De Argentina y San Luis.
- 10- Fenología: Fase y subperíodo. Criterios de observación fenológica en cultivos anuales densos, ralos y pastizales naturales. Método fitofenológico integral.
- 11- Bioclimatología. Concepto. Exigencias y tolerancias meteorológicas de los cultivos. Período crítico y latencia. Sumas

térmicas. Resolución de problemas. Diferentes métodos, ventajas y desventajas. Horas de frío. Fotoperiodismo. Termoperiodismo. Ejercicios de cálculo.

- 12- Heladas. Régimen agroclimático de heladas. Tipos. Duración, intensidad, frecuencia, época de ocurrencia. Períodos medios con y sin heladas. Índices criokindinoscópicos (ICK) de primeras, de últimas heladas y de heladas invernales. Resolución de problemas.
- 13- Regiones Agrícolas, Forestales y Ganaderas de la República Argentina. Modelos Agroclimáticos. El uso de Internet; sitios web de interés en Agrometeorología

VIII - Regimen de Aprobación

1.1.-PARA ALUMNOS REGULARES

- -El dictado de la Asignatura se basará en clases prácticas obligatorias.
- Se exigirá el 80 % de asistencia a clases teórico-prácticas.
- Se llevará una Carpeta de Trabajos Prácticos con los informes de los mismos, los que se entregarán a la clase siguiente de cada Trabajo Práctico para su aprobación.
- -Se tomarán dos exámenes parciales escritos, sobre temas de los Trabajos Prácticos; que se aprobarán con un puntaje mínimo de seis puntos, sobre el total de diez.
- -El alumno tendrá oportunidad de recuperar cada evaluación (en el caso de ausencia o no aprobación).
- Se considerará una recuperación adicional para alumnos que trabajan o madres de acuerdo a la normativa de las ordenanzas CS Nº 26/97 y 15/00.
- Para rendir el examen final como alumno regular, se deberán cumplimentar las exigencias del plan de estudios. El mismo es de modalidad oral, por elección de bolillas de acuerdo al programa combinado de examen, y se presenta ante un tribunal examinador designado por la Facultad, presidido por el responsable de la Asignatura.

1.2.- PARA ALUMNOS LIBRES

También podrán rendir alumnos en condición de libres. Debiendo en éste caso rendir: un examen teórico-práctico escrito, que garantice el conocimiento de los contenidos de la asignatura. Aprobada ésta evaluación con un mínimo de 6 puntos, de un total de 10, el alumno está habilitado a rendir el examen final de acuerdo al Programa de examen de la asignatura.

2.- RÉGIMEN DE APROBACIÓN SIN EXAMEN FINAL

El alumno promocional será aquel que cumpla con los siguientes requisitos:

- a) Asistan al 80% de las clases teórico-prácticas.
- b) Aprueben los exámenes parciales de carácter teórico-práctico con no menos de 7 puntos, sobre el total de 10, de primera instancia.
- c) Se considerará una única evaluación recuperatoria al final del curso, solo para aquellos alumnos que hayan obtenido entre 6 o más, sobre 10 puntos, en la totalidad de las evaluaciones. Por último se realizará un coloquio integrador de la asignatura.

IX - Bibliografía Básica

- [1] ADAMS, R.M., B.H. HURD, S.LENHARTt, and N. LEARY. 1998. Effects of global climate change on agriculture: an interpretative review. Climate Research, 11: 19-30 (I, IV)
- [2] AGRIOS, G. 1997. Plant Pathology.143-152. Editor George Agrios Academic Press. Cuarta Edición.
- [3] ANDERSON, D.L., J.A. DEL AGUILA, A.E. BERNARDON. 1970. Las formaciones vegetales de San Luis. Serie 2. Biología y Producción Vegetal. Vol.VII. Nro 3. Revista de investi0aciones Agropecuarias. RIA. INTA.
- [4] ASOCIACIAON ARGENTINA DE AGROMETEOROLOGIA. Manual operativo y programa del Balance Hídrico Versátil. AADA. Facultad de Ciencias Agropecuarias, CC. 509. Córdoba.
- [5] [BALDY, CH. 1986. Agrometeorología et developpement des regions arides et semi-arides. Comissions d'agrometeorologie de INRA. Institut National de la Recherche Agronómique. Francia.
- [6] BAIER,N. and ROBERTSON, G.N.. 1965. Anew versatile soil moisture budget. Ganadiam journal of plant Sciencie. 46:299-315.
- [7] BAIER W., DYER J.A., SHARP W.R. 1979. The versatile soil moisture budget. Agriculture Canadá, Tech Bull. 87,52

pp.

- [8] BARRY, R.G., CHORLEY R.J. 1980. Atmósfera, tiempo y clima. Ed. Omega. Barcelona. España.
- [9] BIANCA, W.1976. The significance of meteorology in animal production. Int. J. Biometeor.20 (2):139-156.
- [10] BOLLIN, B. 1986. The Greenhouse effect, Climatic change and Ecosystems. John Wiley and Sons Public.
- [11]] BRUNT, A. 1963. Climatología. Espasa Calpe. Buenos Aires.
- [12] BUDYKO, M.I. 1987. The Evolution of the Biosphere. D. Reidel.BURGOS, J.J. 1983. Clima tropical y subtropical. Capítulo 1. En Helman, M., Ganadería tropical. Pág. 1-19. Editorial El Ateneo. Buenos Aires.
- [13] BURGOS,J.J. y A.L. DE FINA.1949. Las experiencias estadounidenses de laboratorio y en la atmósfera libre tendientes a provocar lluvia. Ins. de Suelo y Agrot. Public. Nro 7.Bs As.
- [14] BURGOS J. J., A.VIDAL. 1951. Los climas de la Rep. Argentina. según la nueva clasificación de Thorthwaite. Meteoros. Bs As.
- [15] BURGOS J. J. 1963. Las heladas en la Rep. Argentina. Colección científica del INTA. Vol. III. Bs As.
- [16] BURGOS J. J. 1963. Clasificaciones agroclimáticas. Conferencia Nro 5 del informe de Agrometeorología Tropical. Caracas. Venezuela.
- [17] CASTILLO, F.E. y F.C. SENTIS. Agrometeorología. Ediciones Mundi- Prensa. 1996.517 pag.
- [18] COLLEY, DAVEY Y ESMILES. 1970. Suelo, atmósfera y fertilizantes. Editorial AEDO. Barcelona. España...
- [19] CRACKNELL, A. P. 1997. The Advanced Very High Resolution Radiometer (AVHRR). Taylor & Francis (pgs. 233 a 238 10 párrafo; 246, ½ pág.; 271 a 273 inclus.) (II).
- [20] DA MOTA F. 1977. Meteorología Agrícola. Livraria Novel S. A. Sap Paulo. Brasil.
- [21] DASTE DURAND, F. 1972. Climatología. Ediciones Ariel. Barcelona. España.
- [22] DAUS, F. A. 1945. Geografía física de la Argentina. Ed. Angel Estrada. Bs As.
- [23] DE FINA, A. L.1947. Reconocimiento agroecológico por medio de una serie de plantas cultivadas. Ins. de Suelos y Agrotecnia. Tirada interna 7. Bs As.
- [24] DE FINA, A. L. 1951. Reconocimiento de la aptitud agroecológica de la localidad de..." Instituto de Suelos y Agrotecnia. Cuaderno y planilla. Bs As.
- [25] DE FINA, A. L. 1951. Nueva definición de clima. Meteoros.1(2-3). Bs As.
- [26] DE FINA, A. L. 1961. Difusión geográfica de cultivos índice en la Prov. de San Luis y sus causas. Inst. de Suelos y Agrotecnia. Púb. Nro 37. Bs As.
- [27] DE FINA, A. L. 1965. El clima de la República Argentina. Enc. de Agr. y Jardinería. Acme Agencia. Bs As.
- [28] DE FINA, A. L, y RAVELO A. 1977. Climatología y Fenología Agrícolas. Eudeba. Bs As.
- [29] [DE FINA, A. L. 1992. Aptitud agrícola de la República Argentina. Ed. Academia Nacional de Agronomía y Veterinaria. Bs As.
- [30] DE CESARI, L. U. 1972. Análisis de datos climáticos y su relación con la fruticultura de San Rafael (Mendoza).IDIA 300.
- [31] DONN, W. L 1978. Meteorología. Editorial Reverte. España.
- [32] DOOREMBOS J. y PRUIT, W. O. 1976. Las necesidades de agua de los cultivos. Estudio FAO: Riego y Drenaje. Nro 24-193p.EASTERLING, W.E. 1987. Planning for Droght: Toward a reduction of Societal Vulnerability. Westview Press.
- [33] FAO . 2006. Riego y Drenaje 56. Evapotranspiración del cultivo. Roma Italia.
- [34] GARABATOS, M. 1991. Temas de Agrometeorología. Tomo l . Gráfica Editora. Primera edición en español. Buenos Aires.
- [35] GARABATOS, M. 1991. Temas de Agrometeorología. Tomo ll . Gráfica Editora. Primera edición en español. Buenos Aires.GLANTZ, M. H. 1998. Corrientes de Cambio: El impacto de "El Niño" sobre el clima y la sociedad. Cambridge University Press. 141 pp. (III)
- [36] GOODY, R.M. WLAKER, J. 1975. Las atmósferas. Ed. Omega. Barcelona.
- [37] INSTITUTO FORESTAL NACIONAL. 1985. Curso internacional avanzado sobre el combate de incendios forestales. Pueyrredón 2446. Bs As.IBSNAT. 1989. DSSAT V.2.1: Redefining problem solving. Agrotechnology Transfer 9:1,4.
- [38] JONES, C. A. and J. R. KINIRYy. 1986. CERES-Maize. A Simulation Model of .
- [39] Maize Growth and Development. Texas A&M University Press, College Station.
- [40] KOPPEN, W. 1948. Climatología. Fondo de cultura económica. Méjico.
- [41] MILLER, A. 1964. Climatología. Editorial Omega. Barcelona. España.
- [42] MURPHY M. G. y R. HURTADO. 2011. Agrometeorología. Editorial Facultad Agronomía Buenos Aires. Argentina
- [43] NAYA, A. 1984. Meteorología superior. Editorial Espasa Calpe. Madrid.
- [44] ORTA F. y M. FEDERIGHI.1997. El régimen de heladas en el área de Villa Mercedes (San Luis), en relación con cultivos estivales extensivos. Actas de la VII Reunión Argentina y 1ra Latinoamericana de Agrometeorología. Universidad de Buenos Aires. Buenos Aires Argentina.

- [45] ORTA F.1994. El desmonte indiscriminado y sus efectos perjudiciales al medio ambiente en la Pcia de San Luis". Primera Reunión para la Implementación de un Modelo Ambiental para San Luis . Proyecto Cuidemos Nuestro Mundo. Reunión científico_-educativa Universidad Nacional de San Luis. San Luis. Argentina.
- [46] ORTA F.1994. Caracterización agroclimática del departamento Pedernera en las "Cartas de Suelos de la Provincia de San Luis". Convenio INTA San Luis y CREA (Centro Regional de Estudios Avanzados). Estación Experimental Agropecuaria de INTA San Luis.
- [47] ORTA F. y R. ZANVETTOR. 2000."Caracterización de la sequías en área de Villa Mercedes, San Luis". Actas de la VIII Reunión Argentina de Agrometeorología. Facultad de Ciencias Agrarias. Mendoza. Argentina.
- [48] ORTA F. 2006. "Aplicación del modelo CERES-Maize", como herramienta para evaluar estrategias de manejo del cultivo de maíz bajo riego y secano, en el área de Villa Mercedes (San Luis). Trabajo de Tesis. Biblioteca de la FICES. Universidad Nacional de San Luis.
- [49] ORTA F. y E. ROJAS. 2010. Caracterización Agroclimática de las heladas en Quines, Provincia de San Luís.XII Reunión Argentina y VI Latinoamericana de Agrometeorología. Bahía Blanca. Provincia Buenos Aires. Argentina.
- [50] [ORTA F. y E. ROJAS. 2010.Intensidad y duració de primeras y últimas heladas en elnoroeste de la provincia de San Luís.XII Reunión Argentina y VI Latinoamericana de Agrometeorología. Bahía Blanca. Provincia Buenos Aires. Argentina.
- [51] PALMER, W.C., 1965. Meteorological droght. Research Paper N° 45, Weather Bureau, Washington D.C., 58 páginas.
- [52] PAPADAKIS, J. 1954. Mapa ecológico de la República Argentina. Ministerio de Agric. y Ganadería de la Nación. (Texto y Atlas). Bs As.
- [53] PAPADAKIS, J.1954. Ecología de los cultivos Ministerio de Agric. de la Nación.
- [54] PAPADAKIS J. 1955. Geografía agrícola mundial. Editorial Salvat. Barcelona. España.
- [55] PAPADAKIS, J. 1962. Avances recientes en el estudio hídrico de los climas. IDIA Nº 175. Bs As.
- [56] PASCALE, A. J.y E. A. DAMARIO.1983. Variación del agua edáfica disponible para los cultivos en la región oriental de la Argentina.
- [57] PASCALE, A.J. y E.DAMARIO.2004. Bioclimatología agrícola y Agroclimatología. Buenos Aires Editorial Facultad de Agronomía, 2004. 550p.
- [58] PENMAN, A.L. 1948. Natural evaporation from water bere soiland grase. Royal Society vol. 193. Londres. Inglaterra.
- [59] PETTERSEN, S. 1974. Introducción a la meteorología. Espasa Calpe. Bs As. PODOLSKI, A. 1984. New phenology: Elementos of mathematical forescasting in ecologi. Ed. John Wiley & Sons. New York.
- [60] RIGGS, J.E. 1961. Influencias ambientales sobre el ganado vacuno. Operación carnes. Publicación técnica Nº 11
- [61] RITCHIE, J. T. and OTTER. 1984. Ceres wheat a user oriented vield model. Agristars public.
- [62] ROSEMBERG, W. 1979. Microclimate. John Wiley & Sons N. York.] RUTH GUNTER D. 1979. Meteorologia. Editorial Omega. Bs As.SALINGER, M.J., C.J. STIGTER, and H.P. DAS. 2000. Agrometeorological
- [63] adaptation strategies to increasing climate variability and climate change.
- [64] Agric. Forest Met. 103: 167-184.
- [65] SEILER, R. A. 1980. Estimación de la radiación global en Cba.(Argentina). Revista de Investigaciones Agropecuarias. INTA Vol. XV. N° 3.
- **[66]** SERVICIO METEOROLOGICO NACIONAL S.M.N. 1944 y siguientes. Folletos varios sobre observación e instrumental meteorológicos. Serie D N° 4 al 10.Bs As.
- [67] S.M.N. 1958. Atlas agroclimático Argentino.Bs As.
- [68] STRAHGER, A. 1981. Geografía física. Editorial Omega. Bs As.
- **[69]** THORNTHWAITE, C. W. y J. R. MATHER. 1955. The water balance. Drexel Inst. of Technology. Public in Climatology, Vol. VII, N° 1. New Jersey. USA.
- [70] THORNTHWAITE, C. W. y J. R. MATHER. 1957. Instructions and tables for computing potential the water balance. Drexel. Inst. of techn, Public in Climatology. Vol. X. Nro 3. New Jersey. USA.
- [71] UNL-FAVE-INTA Rafaela 1995. El estrés por calor y su impacto en rodeos de alta producción lechera.
- [72] WANG, J. y G. L. BARGER. 1962. Bibliografthy of agricultural meteorology. The University of Wisconsin press. USA.
- [73] VIERS, G. 1972. Climatología. Ed. OIKOS TAU. Barcelona. España.
- [74] Referencias en Internet
- [75] Cambio climático
- [76] http://www.wmo.int/pages/index_es.html
- [77] http://www.ipcc.ch
- [78] http://www.ipcc-nggip.iges.or.jp/
- [79] http://www.un.org/climatechange/index.shtml
- [80] http://www.climnet.org
- [81] http://www.idae.es

- [82] http://www.energias-renovables.com/paginas/index.asp
- [83] Organización Meteorológica Mundial (OMM):
- [84] http://www.wmo.int/pages/index_es.html
- [85] Calculo de ETo por método Penman Monteih FAO:
- [86] http://www.fao.org/nr/water/eto.html
- [87] Información Agrometerológica
- [88] Servicio Meteorológico Nacional de la República Argentina:
- [89] http://www.smn.gov.ar/
- [90] Temas medioambientales
- [91] www.ecoportal.net

X - Bibliografia Complementaria

- [1] ASOCIACIAON ARGENTINA DE AGROMETEOROLOGIA. Manual operativo y programa del Balance Hídrico Versatil. AADA. Facultad de Ciencias Agropecuarias, C.C. 509. Córdoba.
- [2] AZZI. G. 1959. Ecología Agrícola. Salvat. Ed. Colección Agrícola. Barcelona. España.
- [3] BALDY, CH. 1986. Agrometeorología et developpement des regions arides et semi-arides. Comissions d'agrometeorologie de INRA. Institut National de la Recherche Agronómique. Francia.
- [4] BAIER,N. and ROBERTSON, G.N.. 1965. Anew versatile soil moisture budget. Ganadiam journal of plant Sciencie. 46:299-315.
- [5] BAIER W., DYER J.A., SHARP W.R. 1979. The versatile soil moisture budget. Agriculture Canada, Tech Bull. 87,52 pp.
- [6] BOLLIN, B. 1986. The Greenhouse effect, Climatic change and Ecosystems. John Wiley and Sons Public.
- [7] BRUNT, A. 1963. Climatología. Espasa Calpe. Buenos Aires.
- [8] BUDYKO, M.I. 1987. The Evolution of the Biosphere. D. Reidel Public.
- [9] BURGOS, J.J. y A.L. DE FINA.1949. Las experiencias estadounidenses de laboratorio y en la atmósfera libre tendientes a provocar lluvia. Ins. de Suelo y Agrot. Public. Nro 7 . Bs As.
- [10] BURGOS J.J.y A. VIDAL. 1951. Los climas de la Rep. Argentina. según la nueva clasificación de Thorthwaite. Meteoros. Bs As.
- [11] CAGLIOLO, A. 1955. La microclimatología y su vinculación con la meteorología agrícola. Ingeniería Agronómica. XIII. NRO 4. Bs As.
- [12] CASTILLO, F.E. y F.C. SENTIS. Agrometeorología. Ediciones Mundi- Prensa. 1996.517 pag.
- [13] DAMARIO E.A.y CATTANEO C. L. 1982. Estimación de la evapotranspiración potencial en la Argentina según el método Peman. Rev. de la Fac. de Agr. de Bs As.
- [14] DA MOTA F. 1977. Meteorología Agrícola. Livraria Novel S. A. Sap Paulo.bRASIL.
- [15] DASTE DURAND, F. 1972. Climatología. Ediciones Ariel. Barcelona. España.
- [16] DE FINA, A. L.1947. Reconocimiento agroecológico por medio de una serie de plantas cultivadas. Ins. de Suelos y Agrotecnia. Tirada interna 7. Bs As.
- [17] DE FINA, A. L. 1951. Reconocimiento de la aptitud agroecológica de la localidad de" . Instituto de Suelos y Agrotecnia. Cuaderno y planilla. Bs As.
- [18] DE FINA, A. L. 1961. Difusión geográfica de cultivos índice en la Prov. de San Luis y sus causas. Inst. de Suelos y Agrotecnia. Pub. Nro 37. Bs As.
- [19] DE FINA, A. L. 1965. El clima de la República Argentina. Enc. de Agr. y Jardinería. Acme Agency. Bs As.
- [20] DE FINA, A. L. 1992. Aptitud agrícola de la República Argentina. Ed. Academia Nacional de Agronomia y Veterinaria. Bs As.. Estudio FAO: RIEGO Y DRENAJE.Nro 24- 193p.
- [21] EASTERLING, W.E. 1987. Planning for Droght: Toward a reduction of Societal Vulnerability. Westview Press.
- [22] FAO. 1962. La influencia de los montes. Estudio de silvicultura y productos forestales. Nro 15. Roma. Italia.
- [23] FAO. 1974. Necesidades de agua de los cultivos. Serie Riego y Drenaje. N° 24.
- [24] FREERES, M. Y G.H. POPOV. 1980. Pronóstico de cosechas basado en datos agrometeorológicos. Estudio FAO: Producción y Protección vegetal.17.
- [25] Primera edición en español.Buenos Aires.
- [26] GOODY, R.M. WLAKER, J. 1975. Las atmósferas. Ed. Omega. Barcelona.
- [27] INSTITUTO FORESTAL NACIONAL. 1985. Curso internacional avanzado sobre el combate de incendios forestales. Pueyrredón 2446. Bs As.

- [28] KOPPEN, W. 1948. Climatología. Fondo de cultura económica. Méjico.
- [29] LEDESMA, N.R. 1950. Consecuencias del frío invernal insuficiente en los árboles de follaje caduco. Rev. Fac. Agronomía 27 (2). La Plata.
- [30] LEDESMA, N.R. 1953. Registro fitofenológico integral. Meteoros.
- [31] LONGLEY, N. 1973. Tratado ilustrado de meteorología. Ediciones Bell.
- [32] MATHER, J. R. 1954. The measuremene if potencial evapotranspiration. J. Hopkins Univ. Public in Climatology. Vol. VII, Nro 1. Seabrook. USA.
- [33] MILLER, A. 1964. Climatología. Editorial Omega. Barcelona. España.
- [34] NAYA, A. 1984. Meteorología superior. Editorial Espasa Calpe. Madrid...
- [35] O.M.M. 1988. Animal Health and Production at Extreme Weather. Tech note 191. Ginebra. Suiza.
- [36] O.M.M. Agrometeorological Aspects of Operational. Crop Protection. Tech. Note N° 192
- [37] O.M.M. 1987. Weather and Climate en Animal Perfomance.
- [38] ORTA F.1989. El régimen de heladas en la zona de Villa Mercedes (S.L.) en relación con los cultivos criófilos autor, presentado en la IV Reunión Argentina de Agrometeorología. Río Cuarto. Córdoba. Argentina.
- [39] PALMER, W.C., 1965. Meteorological droght. Research Paper Nº 45, Weather Bureau, Washingthon DC., 58 pàginas.
- [40] PAPADAKIS, J. 1954. Mapa ecológico de la República Argentina. Ministerio de Agric. y Ganadería de la Nación. (Texto y Atlas). Bs As.
- [41] PAPADAKIS, J.1954. Ecología de los cultivos Ministerio de Agric. de la Nación.
- [42] PAPADAKIS J. 1955. Geografía agrícola mundial. Editorial Salvat. Barcelona. España.
- [43] PAPADAKIS, J. 1962. Avances recientes en el estudio hídrico de los climas. IDIA Nº 175. Bs As.
- [44] PENMAN, A. L. 1948. Natural evaporation from water bere soiland grase. Royal Society vol. 193. Londres. Inglaterra.
- [45] PETTERSEN, S. 1974. Introducción a la meteorología. Espasa Calpe. Bs As.
- [46] PODOLSKI, A. 1984. New phenology: Elementos of mathematical forescasting in ecologi. Ed. John Wiley & Sons. New York.
- [47] RITCHIE, J. T. and OTTER. 1984. Ceres wheat a user oriented vield model. Agristars public.
- [48] ROSEMBERG, W. 1979. Microclimate. Jhon Wiley & Sons N. York.
- [49] RUTH GUNTER D. 1979. Meteorologia. Editorial Omega. Bs As.
- [50] SCHNELE, F. 1955. Pralanzen phanologie. Akademische. Verlagage sellschaft Gest & Porting. Leipzig. Alemania.
- [51] S.M.N. 1948. Boletín fenológico. Bs AS.
- [52] S.M.N. 1958. Atlas climático Argentino. BS AS.
- [53] THORNTHWAITE, C. W. y J. R. MATHER. 1955. The water balance. Drexel Inst. of Technology. Public in Climatology, Vol. VII, N° 1. New Jersey. USA.
- [54] THORNTHWAITE, C. W. y J. R. MATHER. 1957. Instructions and tables for computinge potencial the water balance. Drexel. Inst. of techn, Public in Climatology. Vol. X. Nro 3. New Jersey. USA.
- [55] WANG, J. y G. L. BARGER. 1962. Bibliografthy of agricultural meteorology. The University of Wisconsin press. USA. [56] VIERS, G. 1972. Climatología. Ed. OIKOS TAU. Barcelona. España.

XI - Resumen de Objetivos

A través del desarrollo del curso se desea que el alumno llegue a interpretar la relación que existe entre los factores climáticos y meteorológicos como la orografía, latitud, oceanidad, entre otros, y la expresión de los elementos del clima como precipitación, temperatura, vientos en la génesis de los distintos climas y agroclimas

Pueda comprender la conexión entre los componentes meteorológicos- climáticos de la biósfera y los cultivos.Las enfermedades de plantas y animales, y también el conocimiento intrínseco de las adversidades del tiempo y el clima como son las heladas, el granizo, las sequías y el viento; para así evaluar desde un punto de vista tecnológico-científico distintas formas de lucha.

Logre conocer integralmente como el hombre actua sobre el clima y los recursos naturales, para constituirse así en un partícipe activo en la preservación del medio ambiente.

XII - Resumen del Programa

UNIDAD I. INTRODUCCIÓN. EL TIEMPO, EL CLIMA.

I. La ciencia meteorológica: objetivos, ubicación, divisiones, meteorología y climatología. Historia de la meteorología en el mundo y en la República Argentina.

La Organización Meteorológica Mundial.

La meteorología agrícola: objetivos, y en el país.

II. Elementos de climatología y meteorología

El medio físico: a) La atmósfera, composición, características, estratificación.

UNIDAD 2. CALENTAMIENTO DE LA TIERRA Y ATMÓSFERA.

I. La forma de transferencia de calor en el medio: radiación, convección, y difusión turbulenta, advección. El calor latente.

II. Los componentes del clima.

Radiación solar o de onda corta: característica, poder calórico. Constante solar. Efectos modificadores de la atmósfera.

Radiaciones terrestres y de la atmósfera o de ondas largas: características y modificaciones, radiaciones efectivas.

Balance diurno y nocturno de radiación: Fórmulas estimativas de radiación.

UNIDAD 3. TEMPERATURA DEL SUELO Y DEL AIRE

I. La temperatura del suelo. El intercambio de calor a través de la superficie activa: el balance calórico.

Transmisión del calor dentro del suelo: factores y constantes físicas relacionadas.

II. La temperatura del aire. El intercambio de calor suelo-aire. Los procesos de calentamiento y enfriamiento del aire, con y sin adición o cesión de calor. Los gradientes térmicos y la estabilidad del aire. Inversión térmica.

Caracterización climática de la temperatura del aire.

UNIDAD 4. PRESION Y VIENTOS

I. Presión atmosférica. Importancia y medición. Instrumental de presión: barómetros y barógrafos.

Vientos. Causas del viento. Dirección, causas y fuerza del viento. Desviación del viento. Los vientos y los centros ciclónicos y anticiclónicos. Variación diaria de la velocidad.

UNIDAD 5. CIRCULACION ATMOSFERICA

I. Circulación general de la atmósfera: dirección predominante de los vientos sobre la superficie terrestre. Circulaciones especiales: estacionales y locales.Brisa de mar y de tierra, de montaña y de valle. Variación diarias de la velocidad.

II. La circulación general. Fenómeno del Niño/Oscilación del sur, concepto. Teleconexiones Efectos meteorológicos, económico y sociales.

UNIDAD 6. HUMEDAD DEL AIRE

I. La humedad del aire. El vapor de agua en la atmósfera: importancia, efectos, medición y formas de expresión.

UNIDAD 7. PRECIPITACIÓN

I. Precipitación: causas, mecanismo. Inestabilidad coloidal de las nubes. Teorías de la precipitación.

Clasificación de los hidrometeoros. Precipitación y tipos de nubes. Provocación artificial de la precipitación. Clasificaciones de la precipitación según origen, distribución geográfica. Isohietas. Precipitaciones en la Pcia de San Luís.

UNIDAD 8. MASAS DE AIRE, CORRIENTES MARINAS, PRONÓSTICO DEL TIEMPO.

I. Masas de aire: orígenes, características, evolución y clasificación.

II. Frentes fríos y calientes: características.Corrientes marinas. Principales circulaciones oceánicas y sus efectos climáticos. Pronósticos

UNIDAD 9. EVAPORACIÓN, EVAPOTRANSPIRACIÓN, HUMEDAD DEL SUELO.

I. Evaporación: concepto, causas, factores. Evaporación real y potencial. Medida y estimación de la evaporación. Efecto oasis. Evapotranspiración potencial: fórmulas de Peman, Thornthwaite, Papadakis, (aplicaciones y limitaciones), otras fórmulas. I. II. Humedad del suelo. El balance hidrológico del suelo: elementos y fórmulas. La medición periódica continuada del grado de humedad del suelo: métodos de extracción de muestras, bloques porosos, resistencia eléctrica, tensiométrico, y métodos modernos (neutrones, rayos gama).

Cálculo de balance hidrológico con elementos meteorológicos. Ajustes y aplicaciones.

UNIDAD 10. CLIMA GLOBAL, VARIABILIDAD Y CAMBIO CLIMATICO

I. Macro, meso, y microclima. Clima regional y local. El clima de campo. Topoclima.

II.La observación del macroclima.La descripción del clima. Representación numérica y gráfica de los elementos del clima.

Las estadísticas climatológicas. Climogramas. Cartas y Atlas climáticas. Sistematización de datos para computación. Modelos agro climáticos, características, tipos..

- III. La clasificación del clima.
- IV. Cambio climático, causas, efectos. Sus implicancias para la República Argentina y la Provincia de San Luís.

UNIDAD 11. CLIMA ARGENTINO Y SUS CONSECUENCIAS AGROPECUARIAS.

- I. Principales causas determinantes del clima argentino: latitud, continentalidad, relieve del suelo, y vegetación, sistemas báricos, corrientes marinas.
- II. Características principales del clima argentino: régimen de radiación solar. Régimen térmico. Características térmicas del verano e invierno argentino y sus repercusiones agropecuarias. III. El clima argentino según las clasificaciones de Koeppen, Thornthwaite. Regiones .fitogeográficas de la Pcia de San Luis.

UNIDAD 12. EL CLIMA Y LOS FENÓMENOS PERIÓDICOS EN PLANTAS Y ANIMALES.

- I. Fenología: definición y campo de acción.
- II. Los fenómenos periódicos en plantas y animales. Fases visibles y no visibles. Fases fenológicas de algunos cultivos agrícolas. Fases fenológicas de algunas especies del pastizal natural de la Pcia de San Luis.
- III. Métodos de observación fenológica. Registro fenológico integral de Ledesma. Observación de plagas, enfermedades y malezas. Correlación fenológica.

UNIDAD 13. LAS EXIGENCIAS Y TOLERANCIAS METEOROLOGICAS Y CLIMATICAS DE LOS CULTIVOS.

- II.I. La Bioclimatología Agrícola. Las exigencias y tolerancias con relación a las fases y subperíodos. Periodos críticos y de latencia.
- II. La temperatura como factor bioclimático en el crecimiento y desarrollo de los cultivos. La constante térmica: métodos de cálculo: directo, exponencial, residual, y termofisiológico. Validez de la constante térmica. Exigencias de las plantas en bajas temperaturas: las " horas de frío". El termoestadio de los cereales: vernalización. Las horas de frío y los frutales de hojas caducas: Acción bioclimática de la amplitud térmica anual y diaria: termoperiodismo anual, diario y asincrónico. Temperaturas del día y la noche.
- III. La duración del día como factor bioclimático. Fotoperiodismo. Plantas a día corto, largo, indiferentes (nuevos conceptos). IV. Principales características bioclimáticas de los cultivos anuales, estivales, anuales invernales, de media estación, peremnes crió filos, perennes termófilos. Exigencias y tolerancias de cada grupo.

UNIDAD 14. EL TIEMPO Y EL CLIMA SOBRE PLANTAS Y ANIMALES DOMESTICOS.

- I. Las condiciones meteorológicas de tiempo y clima de las plagas (enfermedades y parásitos) de los cultivos. Tipos de relación tiempo- enfermedad, métodos de estudio.
- II. Bioclimatología animal.

UNIDAD 15. PRINCIPALES ADVERSIDADES AGRÍCOLAS DEL TIEMPO Y DEL CLIMA.

- I. Las heladas y la agricultura. Proceso meteorológico de la helada y factores concurrentes. Tipos de heladas: de advección, de radiación, y mixtas. Heladas blancas y negras. Ocurrencia. Fechas medias y extremas de primeras y últimas heladas. Periodo libre de heladas. Intensidad, frecuencia, y probabilidades. Peligrosidad de las heladas: índices. Heladas en el área de Villa Mercedes.
- II. Protección de los cultivos contra el daño por heladas. Métodos de lucha indirectos y directos.
- III. Las sequías y la agricultura. Concepto meteorológico y agrometeorológico de sequía. Tipos de sequía..
- IV. Viento y erosión. Protección mediante cercos y cortinas rompevientos: efecto de las mismas sobre el viento y los elementos del microclima del socaire.
- V. El granizo y la agricultura. Lucha granicera: resultados y estado actual de las experiencias.

UNIDAD 16. CARACTERIZACIÓN AGROCLIMÁTICA.

I. La observación agrometeorológica: requisitos, categorías, tipos, instrumental de la estación agrometeorológica. Descripción agroclimática.

UNIDAD 17. ASISTENCIA Y SERVICIOS AGROMETEOROLÓGICOS.

- I. Servicios agrometeorológicos: fines, funciones, ejemplos. Información agrometeorológica. Boletines agrometeorológicos.
- II. Previsiones agrometeorológicas. Pronósticos meteorológicos de utilización agrícola. Características y plazos de los pronósticos. Elementos del pronóstico. Pronósticos agrometeorológicos propiamente dichos. Pronósticos fenológicos.

UNIDAD 18. EL CAMBIO CLIMATICO Y LA AGRICULTURA.

- I. Cambio climático y sus impactos en la agricultura en Argentina y San Luís...
- III. Modelos. Concepto. Tipos, Descripción.

XIII - Imprevistos

PROGRAMA DE EXAMEN

BOLILLA I

Atmósfera: composición, características, contaminantes.

Temperatura del aire: procesos de calentamiento y enfriamiento. Inversión térmica.

Heladas: caracterización agroclimática

Acción bioclimática de la amplitud térmica anual y diaria: termoperiodismo anual, diario y asincrónico

Régimen pluviométrico de la República Argentina. Instrumental agrometeorológico.

BOLILLA II

Agrometeorología, Meteorología y Climatología. Elementos y factores.

Caracterización climática de la temperatura del aire

Heladas: métodos de lucha.

Criterios de observación fenológica en plantas perennes, anuales, y pastizales naturales.

Régimen térmico de la Republica Argentina. Instrumental Agrometeorológico.

BOLILLA III

Las formas de transferencia del calor.

Balance radiativo, radiación neta, radiación efectiva. Radiación de ondas largas y ondas cortas.

Pronósticos agrometeorológicos. tipos

Lucha contra heladas: métodos directos.

La duración del día como factor bioclimático: Fotoperiodismo. Instrumental Agrometeorológico.

Programa de examen 2013(continuación)

BOLILLA IV

Radiación terrestre y de la atmósfera

Modalidades bioclimáticass de los cultivos.

Circulación general de la atmósfera.

Pronósticos meteorológicos y agrometeorológicos.

agro meteorológico.

Aptitud del clima Argentino para cultivos tropicales, subtropicales, templado y frío. Instrumental.

BOLILLA V

Temperatura del suelo.

Variación del goce de radiación según latitud y época del año. Leyes de radiación.

Sequías: concepto, tipos, caracterización, control y lucha.

Acción bioclimática de la temperatura: temperatura y crecimiento. Sumas de temperatura. Distintos métodos.

Estados del tiempo típicos de la República Argentina. Instrumental agrometeorológico.

BOLILLA VI

Presión atmosférica. Vientos.

Clasificación de Koeppen.

El viento y la agricultura. Lucha contra el viento, cortinas forestales.

Modalidades bioclimáticas de los cultivos.

Causas determinantes del clima Argentino. Instrumental agrometeorológico.

BOLILLA VII

Precipitación: origen, distribución en la Rep. Argentina y San Luis.

Modelos agroclimáticos de cultivos. Tipos.

Calentamiento y riego por aspersión en la lucha contra heladas.

El clima y los animales de explotación económica

Principales características del clima Argentino. Instrumental agroclimático.

BOLILLA VIII

Evaporación y Evapotranspiración. Características, factores

Caracterización climática de las precipitaciones.

Proceso agroclimático de heladas. Tipos. Origen.

El clima y las enfermedades en los vegetales..

Climas agrícolas, forestales y ganaderos de la República Argentina. Instrumental agrometeorológico.

BOLILLA IX

Humedad del suelo. Balance hidrológico.

Clasificaciones agroclimáticas (De Fina, Papadakis)

Macro, meso y microclima. Cambio climático global.

Modelos tipos, descripción.

Aptitud del clima de la República Argentina para distintos tipos de cultivos. Instrumental agrometeorológico.

BOLILLA X

Medición de la evaporación y evapotranspiración.

El granizo y la agricultura. Lucha contra el granizo.

Circulaciones oceánicas y sus efectos sobre el clima.

Modalidades termo y fotoperiódicas de los vegetales.

Distribución estacional de las precipitaciones en la Rep. Argentina. Isohietas. Instrumental agrometeorológico.

BOLILLA XI

Humedad del aire. Nubes. Rocio. Nieblas.

Circulaciones especiales: vientos estacionales y locales.

Fases fenológicas de cultivos anuales extensivos.

Acción bioclimática de la duración del día. Fotoperiodismo.

Distritos agroclimáticos de la Pcia de San LuÍs según la clasificación de De Fina. Instrumental meteorológico.

BOLILLA XII

Flujos de radiación. Características. Medición. Radiación neta.

Régimen térmico del suelo.

Distintas exigencias de los subperíodos de los cultivos, períodos crítico y de latencia.

Programa de examen 13 (continuación)

Relevamiento agroecológico de De Fina.

Fases fenológicas de cultivos agrícolas y pastizales. Instrumental agrometeorológico.

BOLILLA XIII

Nubes. Tipos. Granizo, métodos de lucha.

Masas de aire, frentes. Pronósticos del tiempo.

Bioclimatología animal.

Exigencias en frío de las plantas: Las horas de frío.

Gestados típicos del tiempo en la República Argentina. Instrumental agro meteorológico.

BOLILLA XIV

Caracterización climática de la precipitación

Medición y estimación de la Evapotranspiración potencial

Correlaciones fenológicas.

Cambio climático, efectos en la agricultura.

Principales características del clima Argentino. Instrumental agro meteorológico

XIV - Otros