

# Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica Area: Qca General e Inorganica

(Programa del año 2014)

### I - Oferta Académica

| Materia            | Carrera                        |       | Año  | Período         |
|--------------------|--------------------------------|-------|------|-----------------|
| QUIMICA GENERAL II | ANAL. QUIMICO                  | 13/12 | 2014 | 2° cuatrimestre |
| QUIMICA GENERAL II | IMICA GENERAL II ANAL. QUIMICO | -CD   | 2014 | 2 Cuatimestre   |
| QUIMICA GENERAL II | FARMACIA                       | 19/13 | 2014 | 2° cuatrimestre |
| QUIMICA GENERAL II | LIC. EN BIOQUIMICA             | 11/10 | 2014 | 2° cuatrimestre |
| QUIMICA GENERAL II | PROF.EN QUIMICA                | 6/04  | 2014 | 2° cuatrimestre |
| QUIMICA GENERAL II | TECNIC. UNIV EN ESTERILIZACIÓN | 12/12 | 2014 | 2° cuatrimestre |
| QUIMICA GENERAL II | TECNIC. UNIV. LABOR. BIOLÓGICO | 15/12 | 2014 | 2° cuatrimestre |

## II - Equipo Docente

| Docente                       | Función                 | Cargo      | Dedicación |
|-------------------------------|-------------------------|------------|------------|
| SUVIRE, FERNANDO DANIEL       | Prof. Responsable       | P.Asoc Exc | 40 Hs      |
| BALDONI, HECTOR ARMANDO       | Prof. Colaborador       | P.Adj Exc  | 40 Hs      |
| ALVAREZ, MARIA DE LOS ANGELES | Responsable de Práctico | JTP Exc    | 40 Hs      |
| DIAZ, JORGE RAMON ABEL        | Responsable de Práctico | JTP Exc    | 40 Hs      |
| BRAECKMAN, CARLOS DANIEL      | Auxiliar de Laboratorio | A.2da Simp | 10 Hs      |
| GERMANO, MARIA JOSE           | Auxiliar de Laboratorio | A.2da Simp | 10 Hs      |
| RODRIGUEZ, SANDRA EDITH       | Auxiliar de Laboratorio | A.2da Simp | 10 Hs      |

### III - Características del Curso

| Credito Horario Semanal                               |      |                                       |       |      |
|-------------------------------------------------------|------|---------------------------------------|-------|------|
| Teórico/Práctico Teóricas Prácticas de Aula Práct. de |      | Práct. de lab/ camp/ Resid/ PIP, etc. | Total |      |
| 0 Hs                                                  | 2 Hs | 2 Hs                                  | 2 Hs  | 6 Hs |

| Tipificación                                   | Periodo         |  |
|------------------------------------------------|-----------------|--|
| B - Teoria con prácticas de aula y laboratorio | 2° Cuatrimestre |  |

| Duración    |            |                     |                   |  |
|-------------|------------|---------------------|-------------------|--|
| Desde Hasta |            | Cantidad de Semanas | Cantidad de Horas |  |
| 11/08/2014  | 21/11/2014 | 15                  | 90                |  |

## IV - Fundamentación

El curso Química General II, como una continuidad del curso Química General I, constituye el conjunto de conocimientos conceptuales físico-químicos básicos e imprescindibles que le permitirán al alumno profundizar los mismos, en los futuros cursos de grado de química durante el desarrollo de su carrera. Este curso tiene articulación directa, en mayor o en menor medida con todos los cursos de grado de química. Se realizan actividades prácticas de resolución de problemas y de laboratorio en forma sistemática y programada, a fin de que el alumno adquiera destreza y habilidad en estas actividades de gran utilidad para los cursos de química más avanzados.

## V - Objetivos / Resultados de Aprendizaje

Los objetivos de la asignatura Química General II pueden resumirse en los siguientes puntos:

- 1.- Estudiar las fuerzas de interacción que existen entre las moléculas, que justifican propiedades macroscópicas de las sustancias puras y de las soluciones.
- 2.- Estudiar los procesos físicos y de reacciones químicas, que se realiza primero a través de un enfoque termodinámico de equilibrio y en segundo lugar a través de un estudio cinético de las reacciones:
- a. Termodinámica del equilibrio aplicado al estudio de reacciones químicas, equilibrio químico, equilibrio entre iones, equilibrio en pilas electroquímicas.
- b. Una vez realizado el estudio termodinámico sobre la espontaneidad de las reacciones se procede a realizar el estudio cinético.

#### VI - Contenidos

### Tema 1: Termodinámica. 1ra. Ley. Termoquímica

- Tema 2: Energías de interacción. Estado líquido.
- Tema 3: Soluciones. Propiedades coligativas.
- Tema 4: Termodinámica. 2da. y 3ra. Ley.
- Tema 5: Equilibrio Químico.
- Tema 6: Equilibrio Iónico.
- Tema 7: Cinética Química.
- Tema 8: Electroquímica.

## PROGRAMA ANALÍTICO Y DE EXAMEN

TEMA 1. Parte A: Termodinámica: Primera ley. Objetivos y limitaciones. Definiciones: sistemas, límite, ambiente. Tipos de sistemas. Propiedades extensivas e intensivas. Camino, proceso, ciclo. Variables de estado. Naturaleza de la energía. Energía cinética y potencial. Unidades de energía. Sistemas y entornos. Transferencia de energía: trabajo y calor. Primera ley de la termodinámica. Energía interna. Relación entre variación de Energía, calor y trabajo. Parte B: Termoquímica. Procesos endotérmicos y exotérmicos. Funciones de estado. Entalpía. Entalpías de reacción. Calorimetría. Capacidad calorífica y calor específico. Calorimetría a presión constante. Bomba calorimétrica (calorimetría a volumen constante). Ley de Lavoisier-Laplace. Ley de Hess. Entalpías de formación. Empleo de entalpías de formación para calcular entalpías de reacción. Alimentos y combustibles. Otras fuentes de energía.

TEMA 2. Parte A - Energías de Interacción. Teoría Cinética y Molecular de líquidos y sólidos. Fuerzas Intermoleculares. Interacciones Iónicas: Ión-Ión; Ión-Dipolo; Ión-Dipolo Inducido. Interacción dipolo-dipolo. Interacciones con átomos o moléculas neutras (Dipolos Inducidos). El enlace de hidrógeno (o Puente Hidrógeno). Información adicional. Parte B – Estado Líquido. Fuerzas Intermoleculares y Propiedades de los líquidos. Tensión superficial. Viscosidad. Estructura y propiedades del agua. Cambios de fase. Calor de vaporización y punto de ebullición. Temperatura y presión críticas. Equilibrio líquido-sólido. Equilibrio sólido-vapor. Diagramas de fase.

TEMA 3. Soluciones. Propiedades de las soluciones. Una visión molecular del proceso de disolución. Efecto de la temperatura en la solubilidad. La solubilidad de los gases y la temperatura. Efecto de la presión en la solubilidad de los gases. Propiedades coligativas de las disoluciones de no electrólitos. Elevación del punto de ebullición. Disminución del punto de congelación. Presión osmótica. Propiedades coligativas de las disoluciones de electrólitos.

TEMA 4. Termodinámica: Segunda y Tercera ley. Procesos espontáneos. Procesos reversibles e irreversibles. Entropía y segunda ley de la termodinámica. Expansión espontánea de un gas. Entropía. Relación de la entropía con la transferencia de calor y la temperatura. Segunda ley de la termodinámica. Interpretación molecular de la entropía. Tercera ley de la termodinámica: Ley cero. Cambios de entropía en las reacciones químicas: Cambios de entropía del sistema y del entorno. Energía libre de Gibbs. Cambios de energía libre estándar. Energía libre y temperatura. Energía libre y constante de equilibrio.

TEMA 5. Equilibrio químico. Concepto de equilibrio. Constante de equilibrio. Magnitud de las constantes de equilibrio. Sentido de la ecuación química y Keq. Otras formas de manipular ecuaciones químicas y valores de Keq. Unidades de las constantes de equilibrio. Equilibrios heterogéneos. Cálculo de constantes de equilibrio. Aplicaciones de las constantes de equilibrio. Predicción del sentido de la reacción. Cálculo de concentraciones en el Equilibrio. Principio de Le Châtelier: Cambios de concentración de reactivos o productos. Efectos de los cambios de volumen y presión. Efecto de los cambios de temperatura. Efecto de los catalizadores.

TEMA 6. Equilibrio Iónico. Parte A. Equilibrio ácido-base. Autoionización del agua. Producto iónico del agua: Kw. pH y pOH, definiciones y ejemplos. Ácidos y bases. Definiciones de Arrhenius y de Brönsted-Lowry. Ácidos y bases conjugados. Ácidos y bases fuertes y débiles. Constantes de equilibrio Ka y Kb. Tablas. Ejemplos. Cálculo generalizado de pH de soluciones acuosas de ácidos y bases monopróticos. Aplicación de la ecuación general a ácidos fuertes y débiles, concentrados o diluidos. Aplicación del equilibrio químico a la hidrólisis. Relación Estructura-Acidez. Parte B. Aplicaciones del equilibrio químico a soluciones acuosas de especies iónicas. Aplicación a sales poco solubles. Producto de solubilidad. Efecto de ión común. Precipitación selectiva.

TEMA 7. Cinética Química. Alcance de la cinética química. Velocidad y orden de reacción. Reacciones de primer orden, segundo orden. Método de integración para determinar el orden de una reacción y la constante específica de velocidad. Influencia de la temperatura sobre la velocidad de reacción. Ecuación de Arrhenius. Energía de activación y factor de frecuencia. Nociones sobre la teoría de las colisiones y la teoría del estado de transición. Catálisis.

TEMA 8. Electroquímica. Equilibrio en pilas electroquímicas. Fuerza electromotriz y energía libre. Fuerza electromotriz y constante de equilibrio. Electrodo de hidrógeno. Potenciales de electrodo estándar. Ecuación de Nerst. Celda de concentración.

### VII - Plan de Trabajos Prácticos

- 1.-TRABAJOS PRÁCTICOS DE LABORATORIO: duración 3 hs./sem.
- 1°. NORMAS GENERALES DE SEGURIDAD

Condiciones de trabajo: Prevención. Normas de seguridad. Cuidado y limpieza del lugar de trabajo. Señalizaciones. Código de colores. Hábitos de trabajo: Ubicación del material de seguridad como extintores, duchas de seguridad, lavaojos, botiquín, etc. Etiquetas y fichas de datos de seguridad de los productos. Campanas. Protección personal: Normas básicas. Criterio y grados de protección. Elementos de protección personal. Guantes de seguridad. Guardapolvos. Gafas de seguridad en el laboratorio: Seguridad en la manipulación de materiales y/o sustancias. Derrames. Tratamiento de polvos, gases y humos. Tratamiento de residuos.

- 2°. Energías de interacción. Medición de la viscosidad de un líquido. Experiencias demostrativas de diferencias de energía de interacción entre diferentes líquidos.
- 3°. Equilibrio químico. Principio de Le Chatelier-Braun. Equilibrio iónico. Solubilidad de sales. Hidrólisis de sales. Soluciones reguladoras de pH.
- 4°. Cinética química. Determinación de constante de velocidad de una reacción de pseudo primer orden. OBSERVACION: En el caso de los alumnos de la carrera de Profesorado en Química, como parte de su formación, ayudarán en la preparación de los laboratorios.
- 2.- TRABAJOS PRÁCTICOS DE AULA: duración 3 hs./sem.
- 1. Termodinámica 1° ley.
- 2. Termoquímica.
- 3. Energías de interacción.
- 4. Estado líquido.
- 5. Propiedades coligativas.
- 6. 2° y 3° ley de termodinámica.
- 7. Equilibrio químico.

- 8. Equilibrio iónico.
- 9. Cinética química.
- 10. Electroquímica.

El alumno desarrollará 14 clases en las cuales trabajará en la resolución de problemas de aplicación sobre los temas desarrollados en la parte teórica.

#### 3.- NORMAS GENERALES DE SEGURIDAD

Condiciones de trabajo: Prevención. Normas de seguridad. Cuidado y limpieza del lugar de trabajo. Señalizaciones. Código de colores.

Hábitos de trabajo: Ubicación del material de seguridad como extintores, duchas de seguridad, lavaojos, botiquín, etc.

Etiquetas y fichas de datos de seguridad de los productos. Campanas.

Protección personal: Normas básicas. Criterio y grados de protección. Elementos de protección personal. Guantes de seguridad. Guardapolvos. Gafas de seguridad.

Seguridad en el laboratorio: Seguridad en la manipulación de materiales y/o sustancias. Derrames. Tratamiento de polvos, gases y humos. Tratamiento de residuos.

## VIII - Regimen de Aprobación

## PARA REGULARIZAR EL CURSO EL ALUMNO DEBERÁ CUMPLIR CON LOS SIGUIENTES REQUISITOS:

- a. Asistir al 80% de las clases teóricas.
- b. Asistir al 80% de los prácticos de aula.
- c. Realizar y aprobar el 100% de los trabajos prácticos de laboratorio.
- d. Aprobar el 100% de los exámenes parciales.

#### 1. TRABAJOS PRÁCTICOS

Los trabajos prácticos consisten en prácticos de aula y prácticos de laboratorio. La aprobación de los mismos implica que el alumno demuestre un conocimiento claro del tema, alcanzando los objetivos fijados. La evaluación de los prácticos de laboratorio se realizará mediante un cuestionario.

### 2. RECUPERACIONES DE LOS PRÁCTICOS DE LABORATORIO

El alumno que reprobó un trabajo práctico tendrá derecho a recuperarlo en dos oportunidades.

### 3. EVALUACIONES PARCIALES

Para aprobar la asignatura el alumno deberá aprobar el 100% de los exámenes parciales. El alumno deberá asistir a rendir los exámenes con Libreta Universitaria o algún otro documento que acredite fehacientemente su identidad.

### a. CONDICIÓN REGULAR:

Se tomarán tres exámenes parciales. El alumno tendrá derecho a una recuperación de cada uno de los tres parciales en fechas a fijar por la cátedra. El alumno que en la instancia de recuperación haya desaprobado uno de los tres parciales (cualquiera de ellos) tendrá derecho a sólo una recuperación extra. Esta recuperación se llevará a cabo en fecha a determinar por la cátedra. Los exámenes parciales y las recuperaciones constarán de quince preguntas. Para aprobar el alumno deberá contestar correctamente como mínimo diez preguntas.

b. CONDICIÓN PROMOCIÓN SIN EXÁMEN FINAL: Se tomarán tres exámenes parciales. Los exámenes parciales constarán de quince preguntas. Para aprobar el alumno deberá contestar correctamente doce preguntas. Para promocionar el alumno deberá aprobar los tres parciales en la primera instancia.

Al finalizar el curso deberá rendir una evaluación final integradora de acuerdo a la resolución vigente.

Como condición también deben asistir al 100% de los trabajos prácticos de laboratorio.

Cumplidos todos los requisitos anteriormente expuestos, la nota resultará de promediar todas las notas obtenidas por el alumno en las distintas instancias.

En el caso de no satisfacer alguna de las exigencias de promocionalidad, el alumno automáticamente quedará incorporado al Régimen de Alumnos Regulares.

#### **EXAMEN FINAL**

Para aprobar el curso el alumno deberá cumplir:

- a) con los requisitos de regularización establecidos en el presente programa.
- b) con la aprobación del examen final (en cualquiera de los turnos establecidos por el calendario académico de la Facultad), cuya calificación mínima cuantitativa es de 4 (cuatro) puntos. Para rendir el examen final los alumnos deberán presentar al Tribunal Examinador su Libreta Universitaria (Ord. 13/03 Régimen Académico de la U.N.S.L.).

El exámen final estará distribuido de la siguiente manera:

BOLILLA 1: TEMA 1. Parte A: Termodinámica: Primera ley.

- BOLILLA 2: TEMA1. Parte B: Termoquímica.
- BOLILLA 3: TEMA 2. Parte A Energías de Interacción.
- BOLILLA 4: TEMA 2. Parte B Estado Líquido.
- BOLILLA 5: TEMA 3 Soluciones. Propiedades coligativas
- BOLILLA 6: TEMA 4 Termodinámica: Segunda y Tercera ley.
- BOLILLA 7: TEMA 5. Equilibrio químico.
- BOLILLA 8: TEMA 6. Equilibrio Iónico.
- BOLILLA 9: TEMA 7. Cinética Química.
- BOLILLA 10: TEMA 8. Electroquímica.

Dadas las características del curso y considerando que se trata del primer año de la carrera en el que se realizan prácticas de laboratorio (ver fundamentación), y que la realización de la parte experimental resulta esencial para la formación básica de los alumnos es que en esta asignatura no puede rendirse el examen final como alumno libre.

## IX - Bibliografía Básica

- [1] R. CHANG "Química" 10ma. ed. 2013 McGraw-Hill, México.
- [2] P. ATKINS, L. JONES. "Principios de Química: los caminos del descubrimiento" 5ta. ed. 2012 Editorial Médica Panamericana, Buenos Aires.
- [3] P. ATKINS, L. JONES. "Química. Moléculas. Materia. Cambio" 3ra. ed. 1998 Ediciones Omega S. A., Barcelona.
- [4] J. UMLAND, J. BELLAMA. "QUÍMICA GENERAL" 3ra. ed. 2000 International Thompson Eds. S. A., México
- [5] R.H. PETRUCCI, W.S. HARWOOD, H.F. GEOFFREY. "Química General. Enlace químico y estructura de la materia". 8va. ed. 2003 Prentice Hall, España.
- [6] R.H. PETRUCCI, W.S. HARWOOD, H.F. GEOFFREY. "Química General. Reactividad química compuestos inorgánicos y orgánicos". 8va. ed. 2003 Prentice Hall, España.

## X - Bibliografia Complementaria

- [1] F. BRESCIA, J. ARENTS, H. MEISLCH, A. TURK. "Fundamentos de Química" 3ra. ed. 1980 CECSA, México.
- [2] B. M. MAHAN, R. J. Myers. "Química. Curso Universitario" 4ta. ed. 1990 Dison-Wesley Iberoamericana, Argentina.
- [3] W. MASTERTON, E. SLOWINSKI, C. STANISSKI. "Química General Superior" 6ta. ed. 1987 Interamericana, Madrid.
- [4] S. GLASSTONE, D. LEWIS. "Elementos de Fisicoquímica" 2da. ed. 1984 El Ateneo, Buenos Aires

### XI - Resumen de Objetivos

Los objetivos de la asignatura Química General II pueden resumirse en los siguientes puntos:

- 1.- Estudiar las fuerzas de interacción que existen entre las moléculas, que justifican propiedades macroscópicas de las sustancias puras y de las soluciones.
- 2.- Estudiar los procesos físicos y de reacciones químicas, que se realiza primero a través de un enfoque termodinámico de equilibrio y en segundo lugar a través de un estudio cinético de las reacciones:
- a. Termodinámica del equilibrio aplicado al estudio de reacciones químicas, equilibrio químico, equilibrio entre iones, equilibrio en pilas electroquímicas.
- b. Una vez realizado el estudio termodinámico sobre la espontaneidad de las reacciones se procede a realizar el estudio cinético.

### XII - Resumen del Programa

- Tema 1: Termodinámica. 1ra. Ley. Termoquímica
- Tema 2: Energías de interacción. Estado líquido.
- Tema 3: Soluciones. Propiedades coligativas.
- Tema 4: Termodinámica. 2da. y 3ra. Ley.
- Tema 5: Equilibrio Químico.
- Tema 6: Equilibrio Iónico.

| Tema 8: Electroquímica |  |  |
|------------------------|--|--|
| XIII - Imprevistos     |  |  |
|                        |  |  |
| XIV - Otros            |  |  |
|                        |  |  |

Tema 7: Cinética Química.