

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Informatica

(Programa del año 2013) (Programa en trámite de aprobación) (Presentado el 14/09/2013 19:39:33)

Area: Area II: Sistemas de Computacion

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
SIMULACION DE PROCESOS MINEROS	ING.EN MINAS	18/13	2013	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
PRINTISTA, ALICIA MARCELA	Prof. Responsable	P.Adj Exc	40 Hs
GIL COSTA, GRACIELA VERONICA	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	Hs	Hs	Hs	4 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2013	15/11/2013	15	60

IV - Fundamentación

Ante la necesidad de obtener más y mejor información para la toma de decisiones en operaciones mineras complejas, se utiliza la simulación de procesos, sistema que es aplicado actualmente en diferentes industrias. La simulación es una indispensable metodología para la descripción y análisis de una amplia variedad de problemas reales. Usada apropiadamente, proporciona considerables beneficios según el contexto en la que se use: ahorro de tiempo; ahorro de recursos económicos; permite analizar la ocurrencia de ciertos fenómenos a través de la reconstrucción de escenas y un minucioso análisis, que no podría llevarse a cabo en una situación real; una vez desarrollado un modelo de simulación válido, se pueden explorar nuevas políticas, procedimientos operativos, o métodos sin necesidad de afectar al sistema real; etc.

La mayoría de las operaciones mineras son ejemplos de sistemas eventos discretos. El software con que se cuenta actualmente y que puede ser usado para realizar una simulación de algún sistema discreto de minería, como ARENAS o FLEXSIM. Las simulaciones realizadas en estos software son generalmente fáciles de entender, rápidas de ejecutar y fáciles de modificar, por lo que un ingeniero en minas, sin necesidad de ser un experto en programación, puede aprovecha las ventajas de su utilización.

Por lo mencionado anteriormente, es considerado de suma importancia, introducir al futuro ingeniero en minas en este campo.

V - Objetivos / Resultados de Aprendizaje

Mediante la simulación, se intenta presentar artificialmente una situación real, con la intención de que el alumno experimente con el modelo, participe y aprenda. Por lo tanto se pretende del alumno que:

* Adquiera los conocimientos teóricos básicos para entender y elegir el método de simulación más adecuado para cada problema

- * Sea capaz de aplicar apropiadamente e interpretar aspectos de diseño y análisis cubiertos en su propio estudio de simulación.
- * Conozca y maneje lenguajes de simulación de propósito específico.
- * Desarrolle destreza en la interpretación tanto visual como analítica de los resultados de una simulación.

VI - Contenidos

BOLILLA 1: INTRODUCCIÓN A SIMULACIÓN

Sistema. Componentes de un sistema. Modelo. Tipos de modelos. Conceptos de simulación. Ventajas y desventajas de la simulación. Comparación de la simulación con métodos analíticos. Modelos de simulación de eventos discretos. Estados. Eventos. Pasos en un estudio de simulación. Ejemplos Utilizando el método de Montecarlo.

BOLILLA 2: LENGUAJES DE SIMULACIÓN

Clasificación de lenguajes: lenguajes de propósito general y lenguajes de propósitos específicos: LENGUAJE ARENA. Introducción y conceptos generales. Entidades, Set, Resource, Transacciones, colas, bloques. Módulos: datos, procesos. Procesos básicos: create, dispose, decide. Facilidades y funciones de distribución. Introducción a la animación. Comandos de ejecución y seteo. Planificación de procesos, planificación de fallas. Capacidad de los recursos. Variables globales. Transferencia avanzada: Enter, Leave, Route, Station. Reportes. LENGUAJE FLEXSIM. Introducción y conceptos generales. Modelado en 3D. Source. Queue. Processor. Sink. Conveyor. Dispatcher. Rack. Operator. Transporter. Statistics.

BOLILLA 3: SIMULACIÓN DE MUESTRAS PROBABILISTICAS

Técnicas para generar números aleatorios. Test para el chequeo de la Uniformidad. Técnicas para generar variables aleatorias discretas y continuas de distribuciones empíricas. Métodos de transformación inversa, de aceptación y rechazo y método de convolución. Relación entre Distribución Exponencial y Poisson.

BOLILLA 4: ANÁLISIS DE LOS RESULTADOS DE LA SIMULACIÓN

Características estocásticas de los resultados. Medidas de performance y su estimación. Estimación de la media y la varianza. Intervalo de confianza. Repetición de corridas. Estimación del sesgo inicial. Medias por lotes. Técnicas de reducción de la varianza. Estimación de la longitud de la corrida de la simulación.

VII - Plan de Trabajos Prácticos

PRACTICO Nº 1: Simulación de Eventos Discretos. Simulación Manual.

PRACTICO Nº 2: Introducción al lenguaje Flexsim.

PRACTICO N° 3: Introducción al lenguaje de Simulación ARENA.

PRACTICO Nº 4: Generación de fallas y planificación de procesos.

PRACTICO N° 5: Proyecto de simulación final: Simulación de un proceso de extracción

VIII - Regimen de Aprobación

Alumnos Regulares:

El alumno deberá presentar y aprobar los prácticos completos de cada unidad. Además se tomará una evaluación que consistirá en un proyecto de aplicación.

Alumnos Promocionales:

El alumno deberá presentar y aprobar los prácticos completos de cada unidad. Además se tomará una evaluación que consistirá en un proyecto de aplicación. Esta evaluación además incluirá una parte teórica que el alumno deberá aprobar en caso de querer promocionar.

Alumnos Libres:

Los exámenes libres serán evaluados de la siguiente manera: Una parte teórica que resuma los contenidos fundamentales de la asignatura, y una parte práctica que permita evaluar la idoneidad del alumno en el manejo del software de simulación.

IX - Bibliografía Básica

- [1] Discrete-event system simulation. Autor(es) Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol. Idioma Inglés Edición 2ta. ed. 2009. New Jersey Prentice Hall.
- [2] Discrete-event system simulation. Autor(es) Banks, Jerry, Carson, John S., Nelson, Barry L. Idioma Inglés Edición 2nd ed. 1996 Upper Saddle River, New Jersey Prentice Hall.
- [3] Simulation modeling and analysis. Autor(es) Law, Averill M., Kelton, W. David.Idioma Inglés Edición 01 ed. 1982 New York McGraw-Hill.
- [4] Introduction to computer simulation. Subtitulo(s) The system dynamics approach. Autor(es) Roberts, Nancy, Deal, Ralph M., Andersen, D.F., Garet, M.S., Shaffer, W.A. Idioma Inglés Edición 01 ed. 1983 Readind Addison-Wesley.
- [5] Introduction to simulation. Subtitulo(s) Programming Techniques and methods of analysis. Autor(es) Payne, James A. Idioma Inglés Edición 01 ed. 1982 New York McGraw-Hill.
- [6] Handbook of simulation. Subtitulo(s) principles, methodology, advances, applications, and practice. Editor(es) Banks, Jerry Idioma Inglés Edición 01 ed. 1998 New York J. Wiley. Disponible en Biblioteca de la UNSL.
- [7] Bibliografia Complementaria de la cátedra.
- [8] Simulation with ARENA. by W. David Kelton, Randall P Sadowski, David T Sturrock and W. Kelton. 2003
- [9] Flexsim Simulation Software User Guide. Copyright © 2001-2010, Flexsim Software Products Inc.

X - Bibliografia Complementaria

[1] Bibliografia Complementaria de la cátedra.

XI - Resumen de Objetivos

Mediante la simulación, se intenta presentar artificialmente una situación real, con la intención de que el alumno experimente con el modelo, participe y aprenda. Por lo tanto se pretende del alumno que:

- * Adquiera los conocimientos teóricos básicos para entender y elegir el método de simulación más adecuado para cada problema
- * Sea capaz de aplicar apropiadamente e interpretar aspectos de diseño y análisis cubiertos en su propio estudio de simulación.
- * Conozca y maneje lenguajes de simulación de propósito específico.
- * Desarrolle destreza en la interpretación tanto visual como analítica de los resultados de una simulación.

XII - Resumen del Programa

Introducción A Simulación

Simulación De Eventos Discretos

Simulación De Muestras Probabilisticas

Análisis De Los Resultados De La Simulación

Fenomenos De Espera.

Lenguajes De Simulación.Lenguaje ARENA. Lenguaje FlexSim.

XIII - Imprevistos

Los imprevistos serán resueltos en tiempo y forma en la medida que se presenten.

XIV - Otros

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		