

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales

(Programa del año 2013) (Programa en trámite de aprobación) (Presentado el 13/12/2013 10:24:50)

Departamento: Fisica Area: Area IV: Servicios

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
TERMODINAMICA BASICA	TEC.UNIV.EN.ENERGIA REN	05/13	2013	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
PERELLO, ANIBAL DANIEL	Prof. Responsable	P.Adj Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
80 Hs	30 Hs	50 Hs	40 Hs	8 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
08/08/2013	15/11/2013	15	120	

IV - Fundamentación

El presente curso es el primero dentro de la carrera referido

al estudio de la física térmica y se realiza luego de que el alumno estudió un primer nivel de mecánica. Se trata de un curso clásico de termodinámica de nivel introductorio

V - Objetivos / Resultados de Aprendizaje

Se pretende estudiar las leyes de la termodinámica, o sea el punto de vista macroscópico de la física térmica, poniendo énfasis en la transferencia de calor. Las numerosas aplicaciones que se estudian, permiten ver como se aplica la teoría, extraer conclusiones de los ejercicios propuestos o para afirmar conceptos teóricos cuya simple enunciado o descripción no pone de manifiesto todos sus aspectos de interés, u ofrece mayor dificultad en el aprendizaje.

Al finalizar el curso, los alumnos deberán tener claros los conceptos de la teoría y el método de aplicación para resolver casos concretos.

VI - Contenidos

BOLILLA N°1.- TEMPERATURA

Criterio macroscópico. Punto de vista microscópico. Comparación de los criterios macroscópico y microscópico. Objeto de la termodinámica.

Equilibrio térmico. Concepto de temperatura. Medida de la temperatura. Comparación de termómetros. Termómetro de gas. Temperatura en escala de los gases perfectos. Escala Celsius de temperatura. Termómetro de resistencia eléctrica. Par termoeléctrico.

Escala práctica internacional de temperaturas. Problemas.

BOLILLA N°2.- CARACTERISTICAS DE LOS SISTEMAS MACROSCOPICOS

Irreversibilidad y tendencia al equilibrio. Ejemplos.

Propiedades de la situación de equilibrio. Calor y temperatura. Magnitudes típicas. Resumen de definiciones. Sugerencia de lecturas suplementarias. Problemas.

BOLILLA N°3.- SISTEMAS TERMODINAMICOS SENCILLOS

Equilibrio termodinámico. Diagrama PV para una sustancia pura. Diagrama PT de una sustancia pura. Superficie PVT. Ecuaciones de

estado. Magnitudes intensivas y extensivas. Problemas.

BOLILLA N° 4.- TRABAJO

Trabajo. Procesos cuasi-estáticos. Trabajo de un sistema hidrostático.

Diagrama PV. El trabajo depende de una trayectoria. Trabajo en procesos cuasi-estáticos. Problemas.

BOLILLA N° 5.- CALOR Y PRIMER PRINCIPIO

Trabajo y calor. Trabajo adiabático. Función energía interna. Formulación matemática del primer principio. Concepto de calor. Forma diferencial del primer principio. Capacidad calorífica y su medida. Capacidad calorífica del agua. Caloría. Ecuaciones válidas para un sistema hidrostático. Conducción del calor. Conductividad térmica. Convección del calor. Radiación térmica. Cuerpo negro. Ley de Kirchoff. Calor radiado. Ley de Stefan - Boltzmann. Problemas.

BOLILLA N° 6.- GASES PERFECTOS

Ecuación de estado de un gas. Energía interna de un gas. Definición de un gas perfecto. Determinación experimental de capacidades caloríficas. Problemas.

BOLILLA Nº 7.- MOTORES, FRIGORIFICOS Y SEGUNDO PRINCIPIO

Transformación de trabajo en calor, y viceversa. Motor Stirling. Máquina de vapor. Motor de combustión interna. Enunciado Kelvin-Planck. Del segundo principio. Frigorífico. Equivalencia de los enunciados de Kelvin-Planck y Clausius. Problemas.

BOLILLA Nº 8.- APLICACIONES PRACTICAS: BOMBA DE ARIETE. COLECTOR SOLAR TÉRMICO.

Transformaciones de energía. Aplicaciones prácticas en Energías Renovables. Aplicaciones concretas. Laboratorio.

VII - Plan de Trabajos Prácticos

Los practicos de aula incluyen la resolución de los problemas de aplicaciones prácticas concretas de cada uno de los temas desarrollados en teorías.

VIII - Regimen de Aprobación

A) Promoción: Requiere la aprobación de dos parciales de problemas y conceptos teóricos con promedio mínimo de siete (7) y nota mínima de seis (6). Asistencia del 80% a todas las clases (teóricas y prácticas), y finalmente un coloquio o examen integrador.

B) Regularidad: Requiere la aprobación de dos parciales de problemas con promedio mínimo de seis (6) y nota mínima de cinco (5). Asistencia del 80% a todas las clases (teóricas y prácticas). Deberá rendir examen final.

IX - Bibliografía Básica

- [1] [1] . Calor y Termodinámica. Mark W. Zermansky
- [2] [2] . Termodinamica. Cengel & Boles
- [3] [3] . Termodinámica Clásica. Russell y Adebiyi

X - Bibliografia Complementaria

[1]

XI - Resumen de Objetivos

Está destinado a alumnos de la Tecnicatura Universitaria en Energías Renovables, que ya estudiaron en un primer nivel la mecánica. Es el primer curso de FISICA TÉRMICA. Su contenido es la termodinámica clásica o sea la macrofísica térmica. Se sitúa en el segundo cuatrimestre del primer año. Se pretende que los alumnos conozcan bien la teoría de la transferencia de calor, sus conceptos fundamentales y aplicaciones.

XII - Resumen del Programa

AII - Resumen dei i Tograma			
BOLILLA N°3 SISTEMAS TERM	ODINAMICOS SENCILLOS		
BOLILLA N° 4 TRABAJO			
BOLILLA N° 5 CALOR Y PRIME	BOLILLA N° 5 CALOR Y PRIMER PRINCIPIO		
BOLILLA N° 6 GASES PERFECT	BOLILLA N° 6 GASES PERFECTOS		
BOLILLA N° 7 MOTORES, FRIGO	ORIFICOS Y SEGUNDO PRINCIPIO		
BOLILLA Nº 8 APLICACIONES F	PRACTICAS.		
XIII - Imprevistos			
XIV - Otros			
ELEVA	CIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable		
Firma:			
Aclaración:			
Fecha:			