

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingenieria de Procesos Area: Procesos Químicos

(Programa del año 2013) (Programa en trámite de aprobación) (Presentado el 13/05/2013 11:20:28)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
Ingeniería de las Reacciones Químicas II	Ing. Química	6/97- 2/03	2013	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ARDISSONE, DANIEL	Prof. Responsable	P.Tit. Exc	40 Hs
BACHILLER, ALICIA	Prof. Colaborador	P.Adj Exc	40 Hs
HERRERO, ALFREDO RICARDO	Responsable de Práctico	JTP Exc	40 Hs
TONELLI, FRANCO	Auxiliar de Práctico	A.1ra Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
7 Hs	Hs	Hs	1 Hs	

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2013	15/11/2013	15	120

IV - Fundamentación

El eje fundamental de la Asignatura es el diseño de reactores catalíticos heterogéneos.

Tiene sus pilares fundamentales en materias tales como Termodinámica, Fisicoquímica, Fenómenos de Transporte e Ingeniería de las Reacciones Químicas.

Esta Asignatura e Ingeniería de las Reacciones Químicas I son las materias que marcan una de las diferencias más notables entre la formación del Ingeniero Químico y la de profesionales de otras ramas de la Ingeniería. De allí la importancia de su inclusión en el Plan de Estudios.

Como asignaturas auxiliares son de particular importancia Computación y Métodos Numéricos.

V - Objetivos / Resultados de Aprendizaje

Una vez finalizada la asignatura el alumno deberá ser capaz de:

- 1.- Integrar los conocimientos de las asignaturas previas: Termodinámica, Fisicoquímica, Fenómenos de Transporte e Ingeniería de las Reacciones Químicas con los de IRQUI II.
- 2.- Diseñar reactores catalíticos heterogéneos de lecho fijo.
- 3.- Evaluar desviaciones del comportamiento ideal y modelarlas en el sentido de optimizar los diseños.

VI - Contenidos

TEMA 1: REACCIONES HETEROGÉNEAS - CATALISIS HETEROGENEA

Reacciones heterogéneas. Características generales. Clasificación. Definición general de la catálisis. Catalizadores: propiedades. Desactivación. Etapas de una reacción catalítica. Velocidad global de reacción. Adsorción física y química. El modelo de Langmuir: tratamiento Cuantitativo. La teoría de adsorción en multicapas (Ecuación BET).

Propiedades físicas de los catalizadores. Superficie específica. Volumen hueco y densidad del sólido. Distribución de volumen de poros: método de penetración de mercurio, método de desorción de Nitrógeno.

TEMA 2: CINETICA HETEROGENEA

Reactores Catalíticos heterogéneos. Evaluación de reactores de laboratorio. Eliminación de controles.

Expresiones de velocidad para reacciones catalíticas heterogéneas. Derivación de ecuaciones de velocidad. Adsorción. Reacción química superficial. Desorción. Mecanismos. Etapa controlante.

Metodología de análisis cinético. Método diferencial: discriminación y estimación basada en la representación de los datos. Estimación de parámetros por regresión lineal: a) Procedimiento de estimación; b) Propiedades estadísticas y pruebas de hipótesis. Estimación de parámetros por regresión no lineal. Método integral de análisis cinético.

TEMA 3: PROCESOS DE TRANSPORTE EXTERNO EN REACCIONES HETEROGÉNEAS

Efecto de los procesos físicos sobre la velocidad de reacción observada. Resistencia a la transferencia de materia. Correlaciones. Difusión y reacción en la interfase. Factor de efectividad externo, isotérmico. Efectividad en términos de observables. Efectividad externa no isotérmica generalizada.

TEMA 4: DIFUSIÓN Y REACCIÓN EN MEDIOS POROSOS

Transferencia de masa intragranular. Mecanismos de transferencia de materia en capilares. Difusión molecular, Knudsen, combinada, configuracional, superficial. Difusividad efectiva. Definición. Estima a partir de modelos de la estructura porosa. Modelo de poros paralelos. Modelo de poros en desorden.

Interacción entre transferencia de masa y reacción. Partícula catalítica isotérmica: Diferentes geometrías. Módulo de Thiele. Factor de efectividad interno. Módulo de Thiele observable. Reacciones limitadas por la difusión. Partícula no isotérmica. Diferentes geometrías. Factor de efectividad.

Factor de efectividad global. Eliminación de regímenes limitados por reacción y difusión: criterio de Weisz-Prater, criterio de Mears.

TEMA 5: DISEÑO DE REACTORES HETEROGÉNEOS, REACTORES CATALÍTICOS

Introducción. Diseño de reactores para reacciones catalíticas heterogéneas. Tipos comercialmente significativos de reactores catalíticos heterogéneos. Reactores de lecho fijo. Reactores trickle-bed. Reactores de lecho móvil. Reactores de lecho fluidizado. Reactores slurry. Clasificación de los modelos de reactores de lecho fijo. Modelos pseudo-homogéneos de reactores de lecho fijo. Modelo unidimensional pseudo-homogéneo de reactores de lecho fijo. Modelo bidimensional pseudo-homogéneo de reactores de lecho fijo.

TEMA 6: REACTORES REALES

La técnica trazador respuesta. Discusión cualitativa. Ecuación de balance de trazador tiempo medio de Residencia. Modelos para reactores no ideales. Modelos para reactores ideales. Flujo pistón y mezcla completa ideales. Estancamiento. Canalizaciones. Dispersión. Modelo de dispersión. Modelo tanques en serie. Modelo en reciclo. Reactor de flujo laminar. Modelo de Dispersión: La ecuación del modelo. Análisis dimensional.

Análisis de reactores con flujo pistón disperso. Correlaciones para coeficientes de dispersión. Efectos de la dispersión sobre la performance del reactor. Criterios para despreciar efectos de dispersión. Medición de coeficientes de dispersión. Determinación de De.

Distribuciones de tiempos de residencia. Función de densidad de tiempos de residencia. Determinación de E(t) desde la repuesta a un impulso de trazador. Determinación del tiempo medio de residencia. Distribución de tiempo de residencia. Determinación de F(t) desde una respuesta a trazador en escalón positiva o negativa. Tiempo reducido. Desviación desde los patrones de flujo ideal: zonas estancas. By-pass recirculación interna.

Micromezclado y modelo de flujo segregado. Perdición de mezclado. Estados de agregación y mezclado. Modelo de flujo segregado. Modelo de máximo mezclado. Efecto del micromezclado sobre la conversión.

VII - Plan de Trabajos Prácticos

TRABAJOS PRÁCTICOS DE AULA

Consistirán en la resolución de problemas oportunamente propuestos por la cátedra. A su vez deberán resolverse problemas con el auxilio de la computadora para lo cual los mismos serán planteados en el aula y posteriormente aplicados en máquina.

TRABAJOS PRÁCTICOS DE LABORATORIO

Se realizarán los siguientes trabajos prácticos de laboratorio:

- 1.- Determinación de distribución de tiempos de residencia en reactores tanque agitado continuos.
- 2.- Determinación de distribución de tiempos de residencia en reactores flujo pistón.

VIII - Regimen de Aprobación

REGIMEN DE ALUMNOS REGULARES

Para regularizar el curso, es requisito que los alumnos:

- Asistan como mínimo al 80% de las clases teórico-prácticas.
- Asistan a todos los trabajos prácticos de laboratorio y los aprueben a través de la elaboración de los informes respectivos.
- Aprueben dos evaluaciones parciales, de carácter práctico, o sus correspondientes recuperaciones, con un mínimo de 7 (siete) puntos.

REGIMEN DE EXAMEN PARA ALUMNOS REGULARES

- Se requiere la aprobación de un examen oral individual sobre aspectos teóricos de la asignatura.

REGIMEN DE PROMOCION SIN EXAMEN FINAL

Podrán cursar por este régimen aquellos alumnos que hayan aprobados las asignaturas correlativas requeridas por el plan de estudios, hasta la fecha determinada por el calendario académico, y figuren en condición de promocional en el sistema de alumnos.

Para promocionar la asignatura, es requisito que los alumnos:

- Asistan como mínimo al 80% de las clases teórico-prácticas.
- Asistan a todos los trabajos prácticos de laboratorio y los aprueben a través de la elaboración de los informes respectivos.
- Aprueben dos evaluaciones parciales, de carácter práctico, o sus correspondientes recuperaciones, con un mínimo de 7 (siete) puntos.
- Aprueben dos evaluaciones sobre conceptos teóricos de la asignatura, con un mínimo de 7 (siete) puntos. Tales evaluaciones se tomarán en fechas a convenir con los alumnos, en el transcurso del cuatrimestre.
- Aprobar un coloquio integrador, que se tomará en la semana siguiente a la finalización del cuatrimestre.

REGIMEN DE ALUMNOS LIBRES

- Alumno que cursó la asignatura y quedó libre por parciales, habiendo aprobado todas las instancias de trabajos prácticos de laboratorio.

Se requiere:

- 1. Aprobar un examen escrito, de carácter eliminatorio, que consistirá en la resolución de problemas basado en los trabajos prácticos de aula.
- 2. Aprobar un examen oral de los temas teóricos del curso.
- Alumno que no cursó la asignatura.

Se requiere:

- 1. Aprobar el Práctico 0, Seguridad en el Laboratorio.
- Realizar y aprobar con el correspondiente informe, como mínimo, un trabajo práctico de laboratorio a sortear (Prácticos 1 a
 3).
- 3. Aprobar un examen escrito, que consistirá en la resolución de problemas basado en los trabajos prácticos de aula.
- 4. Aprobar un examen oral de los temas teóricos del curso.

Cada instancia tiene carácter eliminatorio.

IX - Bibliografía Básica

- [1] Chemical Reactor Analysis and Design. Froment & Bischof. J. Wiley and Sons. N.Y
- [2] Ingeniería de la Cinética Química. J.M. Smith. Ed. CECSA.3
- [3] Ingeniería de las Reacciones Químicas. O. Levenspiel. Ed. Reverté
- [4] Elements of Chemical Reaction Engineering. H.Scott Fogler. Forth Edition, Prentice Hall.
- [5] Apuntes de Cátedra.

X - Bibliografia Complementaria

- [1] Charles G. Hill, Jr. John Wiley & Sons
- [2] Análisis y Simulación de Procesos. Himmelblau, Bischoff. J. Wiley and Sons, N.Y.
- [3] Introducción al Diseño de Reactores Químicos. Ferreti, Farina y Barreto. Ed. EUDEBA.
- [4] Process Analysis by Statistical Methods. Himmelblau. J. Wiley and Sons. N.Y.
- [5] Chemical kinetics. Laidler K.J. Mc. Graw Hill Book Comp.
- [6] Introduction to the Analysis of Chemical Reactors. Aris R., Prentice Hall.
- [7] Elementary Chemical Reactor Analysis. Aris, R. Prentice Hall.
- [8] Kinetics of Chemical Processes. Boudart, M. Prentice Hall.
- [9] Chemical Process Principles. Hougen and Watson.
- [10] Trabajos publicados en revistas especializadas.

XI - Resumen de Objetivos

Una vez finalizada la asignatura el alumno deberá ser capaz de:

- 1.- Integrar los conocimientos de las asignaturas previas: Termodinámica, Fisicoquímica, Fenómenos de Transporte e Ingeniería de las Reacciones Químicas con los de IRQUI II.
- 2.- Diseñar reactores catalíticos heterogéneos de lecho fijo.
- 3.- Evaluar desviaciones del comportamiento ideal y modelarlas en el sentido de optimizar los diseños.

XII - Resumen del Programa

TEMA 1: REACCIONES HETEROGÉNEAS - CATALISIS HETEROGENEA

Reacciones heterogéneas. Clasificación. Definición general de la catálisis. Catalizadores. Etapas de una reacción catalítica. Velocidad global de reacción. Propiedades físicas de los catalizadores

TEMA 2: CINETICA HETEROGENEA

Expresiones de velocidad para reacciones catalíticas heterogéneas. Derivación de ecuaciones de velocidad. Metodología de análisis cinético.

TEMA 3: PROCESOS DE TRANSPORTE EXTERNO EN REACCIONES HETEROGÉNEAS

Efecto de los procesos físicos sobre la velocidad de reacción observada. Factor de efectividad externo, isotérmico. Efectividad en términos de observables. Efectividad externa no isotérmica generalizada.

TEMA 4: DIFUSIÓN Y REACCIÓN EN MEDIOS POROSOS

Transferencia de masa intragranular. Interacción entre transferencia de masa y reacción. Módulo de Thiele. Factor de efectividad interno. Módulo de Thiele observable. Reacciones limitadas por la difusión. Factor de efectividad. Factor de efectividad global. Eliminación de regímenes limitados por reacción y difusión: criterio de Weisz-Prater, criterio de Mears.

TEMA 5: DISEÑO DE REACTORES HETEROGÉNEOS. REACTORES CATALÍTICOS

Diseño de reactores para reacciones catalíticas heterogéneas. Reactores de lecho fijo. Clasificación de los modelos de reactores de lecho fijo. Modelo speudo-homogéneos de reactores de lecho fijo. Modelo unidimensional pseudo-homogéneo de reactores de lecho fijo. Modelo bidimensional pseudo-homogéneo de reactores de lecho fijo.

TEMA 6: REACTORES REALES

XIII - Imprevistos	
XIV - Otros	
ELEVA	CIÓN y APROBACIÓN DE ESTE PROGRAMA
	Profesor Responsable
Firma:	
Aclaración:	
Fecha:	

La técnica trazador respuesta. Modelos para reactores ideales. Estancamiento. Canalizaciones. Dispersión. Modelo de

Distribuciones de tiempos de residencia. Función de densidad de tiempos de residencia. Micromezclado y modelo de flujo segregado. Perdición de mezclado. Estados de agregación y mezclado. Modelo de flujo segregado. Modelo de máximo

dispersión. Modelo tanques en serie. Modelo en reciclo. Reactor de flujo laminar. Modelo de Dispersión.

mezclado. Efecto del micromezclado sobre la conversión.