

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Fisica

(Programa del año 2013) (Programa en trámite de aprobación) (Presentado el 18/04/2013 09:02:36)

Area: Area V: Electronica y Microprocesadores

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
PROCESAMIENTO DIGITAL DE SEÑALES II	ING.ELECT.O.S.D	13/08	2013	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
PETRINO, RICARDO	Prof. Responsable	P.Asoc Exc	40 Hs
GARCIA, JESUS ROMUALDO	Responsable de Práctico	JTP Semi	20 Hs
CALDERON RIVERO, SERGIO DANIEL	Auxiliar de Práctico	A.1ra Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	45 Hs	Hs	45 Hs	6 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre

	Di	uración	
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
14/03/2013	19/06/2013	15	90

IV - Fundamentación

En Procesamiento Digital de Señales II se desarrollan los principios del Procesamiento Digital de Imágenes y Visión artificial. Se desarrollan aplicaciones utilizando un Software específico.

V - Objetivos / Resultados de Aprendizaje

Introducir los fundamentos del procesamiento de Imágenes y Visión por Computador, y sus aplicaciones.

VI - Contenidos

Tema 1: Introducción al Procesamiento digital de Imágenes.

Qué es el Procesamiento Digital de Imágenes. Ejemplos de los campos de aplicación, imágenes generadas por rayos gama, rayos-X, en la banda ultravioleta, espectro visible e infrarrojo; en la banda de radio y de microondas. Pasos fundamentales en el procesamiento digital de Imágenes. Componentes de un sistema de Procesamiento de Imágenes.

Tema 2.Fundamentos de Imágenes Digitales.

Adaptación al brillo y discriminación. Adquisición y sensado de imágenes. Sensores simples, lineales y matriciales. Muestreo y cuantización. Representación de Imágenes digitales. Resolución espacial y niveles de gris. Zooming y reducción. Relaciones básicas entre pixeles. Mediciones de distancia.

Tema 3:Mejoramiento de Imágenes en el dominio espacial.

Transformaciones básicas de niveles de gris. Transformaciones logarítmicas, exponenciales, lineales por tramos, bit-slicing.

Procesamiento de Histogramas. Ecualización de histogramas. Especificación de Histograma. Mejoramiento usando operaciones lógicas y Aritméticas. Sustracción, promediado. Fundamentos de filtrado espacial. Filtros de suavizado espaciales. Filtros de resaltado (sharpening). Derivadas segundas para mejoramiento, el Laplaciano. Mascaras para operaciones de unsharp y high-boost.

Combinación de métodos para mejoramiento espacial.

Tema 4: Mejoramiento de imágenes en el dominio Frecuencial.

La DFT en dos dimensiones. Filtros de realzado y suavizado en el dominio frecuencial.

Tema 5: Fundamentos del Procesamiento Color.

Modelos color: RGB, CMY/CMYK y HSI. Procesamiento seudocolor: metodo de separación de intensidades, transformaciones de niveles de gris a color. Conceptos básicos del procesamiento full-color. Transformaciones color: formulación, complemento color, separación del color. Correcciones de tono y color. Procesamiento de histogramas. Suavizado y realzado.

Tema 6: Procesamiento Morfológico de Imágenes.

Conceptos básicos de teoría de conjuntos. Operaciones lógicas sobre imágenes binarias. Dilatación y Erosión. Apertura y cierre.

La transformada Hit-or-Miss.

Algoritomos morfológicos básicos.

Tema 7: Segmentación de Imágenes.

Detección de discontinuidades. Detección de puntos, lineas, bordes. El Laplaciano. Unión y detección de bordes. Procesado usando la transformada de Hough. Umbralización. Importancia de la Iluminación. Umbralización adaptiva. Segmentación basada en regiones. Uso del movimiento para segmentación.

Tema 8:Representación y Descripción de Imágenes.

Representacion: Códigos cadena. Aproximaciones poligonales. Firma. Segmentos de bordes. Esqueletos.

Descriptores de bordes: número de forma. Descriptores de Fourier. Momentos estadísticos. Descriptores de regiones. Textura. Descriptores relacionales.

Tema 9: Wavelet y procesamiento Multiresolución.

Introducción a las Wavelets.Introducción a la transformada Wavelet. Procesamiento multiresolución. .Ej. de aplicaciones.

Tema 10: Fundamentos del procesamiento de Video.

Video Analógico monocromático y color. Bases de Video digital. Procesamiento de video en Matlab.

VII - Plan de Trabajos Prácticos

TP1- Formato de Imágenes.

TP2- Transformaciones de Intensidad

TP3- Ruido y Filtrado.

TP4- Color

TP5- Operaciones Morfológicas

TP6- Segmentación

TP7- Representación y Descripción.

TP8- Filtrado Multiresolución.

TP9- Procesamiento video básico.

Proyecto y Diseño.

VIII - Regimen de Aprobación

Aprobación de los trabajos prácticos.

Asistencia al 80 % de los trabajos prácticos.

Aprobación del Proyecto.	

IX - Bibliografía Básica

- [1] Digital Image Processing. Gonzalez-Woods. Prentice Hall-2002 2nd edition.
- [2] Digital Image Processing using Matlab. Gonzalez-Woods-Eddins. Pearson. Prentice Hall. 2004.
- [3] Practical Image and Video Processing using Matlab. Oge Marques. IEEE-Wiley.2011.

X - Bibliografia Complementaria

- [1] Machine Vision. Jain. Kasturi. Schunck. McGrawHill 1995.
- [2] Visión por Computador.Fundamentos y métodos. DE LA ESCALERA HUESO. Editorial PEARSON EDUCACION.Isbn 8420530980.
- [3] Visión por Computador. Imágenes digitales y aplicaciones. Gonzalo Pajares. Jesús M. de la Cruz. Editorial AlfaOmega/Ra-Ma. México. 2002.

XI - Resumen de Objetivos

Aprender los fundamentos y aplicaciones de Procesamiento de Imágenes.

XII - Resumen del Programa

Introducción y Fundamentos de Procesamiento de Imágenes. Mejoramiento de Imágenes en el dominio Espacial y frecuencial. Fundamentos del procesamiento color. Procesamiento morfológico de Imágenes. Segmentación de Imágenes. Representación y descripción de Imágenes. Introducción a Wavelets para procesamiento de Imágenes. Introducción al procesamiento digital de video.

XIII - Imprevistos		
XIV - Otros		

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		