

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Bioquímica y Cs Biologicas Area: Química Biologica (Programa del año 2012)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
QUIMICA BIOLOGICA	FARMACIA	4/04	2012	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ZIRULNIK, FANNY	Prof. Responsable	P.Tit. Exc	40 Hs
BONOMI, MYRTHA RUTH	Prof. Colaborador	P.Adj Exc	40 Hs
NAVIGATORE FONZO, LORENA SILVI	Responsable de Práctico	JTP Semi	20 Hs
STAGNITTA, PATRICIA VIRGINIA	Responsable de Práctico	JTP Exc	40 Hs
CARGNELUTTI, ETHELINA	Auxiliar de Laboratorio	A.2da Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total		Total		
Hs	4 Hs	2 Hs	2 Hs	

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
14/03/2012	22/06/2012	15	120	

IV - Fundamentación

El Curso de Química Biológica, comprende el estudio de las características generales de las enzimas, su cinética y regulación. Estos conocimientos permiten considerar las transformaciones metabólicas de los carbohidratos, lípidos, proteínas y nucleótidos, destacando los procesos de obtención y utilización de energía, como así también la regulación de las distintas vías metabólicas, la relación entre las mismas y su integración. Se destaca también el estudio de la bioquímica de la transmisión de señales a través de hormonas, que actúan regulando los procesos metabólicos. En cada uno de los temas se relaciona el metabolismo normal con las alteraciones patológicas, con el objeto de orientar al alumno hacia la aplicación en diferentes situaciones fisiológicas.

V - Objetivos / Resultados de Aprendizaje

El objetivo del Curso es lograr que los alumnos adquieran conocimientos para:

- 1.-Comprender las propiedades generales de las enzimas y analizar sus características cinéticas y mecanismos de regulación.
- 2.-Conocer las principales vías metabólicas de degradación y biosíntesis, las reacciones enzimáticas fundamentales y los mecanismos de regulación.
- 3.- Entender los procesos de obtención de energía metabólica y su utilización en los distintos procesos biológicos.
- 4.- Relacionar la función de las hormonas en la regulación de los procesos metabólicos.

VI - Contenidos

PROGRAMA SINTETICO

Bolilla 1:ENZIMAS. Características generales. Cinética. Mecanismos de regulación.

Bolilla 2:ENZIMAS DE OXIDO REDUCCION. Cadena respiratoria. Fosforilación oxidativa. Metabolismo de xenobióticos.

Bolilla 3: METABOLISMO. Características generales. Digestión y absorción de carbohidratos METABOLISMO DE CARBOHIDRATOS. Glicólisis.

Bolilla 4: CICLO DE KREBS.. Ciclo de Krebs. Naturaleza anfibólica. VIA DE LAS PENTOSAS. Importancia metabólica.

Bolilla 5: BIOSÍNTESIS DE CARBOHIDRATOS: Gluconeogénesis. Metabolismo del glucógeno

Bolilla 6: LIPIDOS. Digestión y absorción. METABOLISMO: transporte de lípidos en el sistema circulatorio.

Lipoproteínas. Degradación de ácidos grasos saturados. Beta oxidación. Oxidación de ácidos grasos no saturados. Cuerpos cetónicos.

Bolilla 7: METABOLISMO DE LIPIDOS. Biosíntesis de ácidos grasos saturados. Biosíntesis de triglicéridos y fosfoglicéridos. Metabolismo del colesterol. Acidos Biliares.

Bolilla 8: METABOLISMO DE AMINOACIDOS. Destino del grupo amino. Ciclo de la Urea.Destino del esqueleto carbonado. Importancia metabólica. Biosíntesis de aminoácidos.

Bolilla 9: METABOLISMO DE NUCLEOTIDOS PURICOS Y PIRIMIDINICOS. Síntesis y degradación. Importancia metabólica METABOLISMO DEL HEMO.

Bolilla 10: RECEPTORES. Mecanismo de acción. Sistemas de transmisión de señales Principales reguladores de las vías metabólicas: insulina, glucagón, adrenalina, glucocorticoides.

Bolilla 11: INTEGRACIÓN METABÓLICA. Papel regulador del ATP. Centros de control de las principales vías metabólicas. Perfil metabólico de los órganos más importantes. Ciclo ayuno- alimentación.

PROGRAMA ANALITICO

BOLILLA 1: ENZIMAS.Naturaleza química. Propiedades generales. Nomenclatura y clasificación. Coenzimas y grupos prostéticos. Determinación de la actividad enzimática. Unidades. Complejo enzima-sustrato. Sitio activo.Factores que afectan la actividad enzimática: concentración de enzima, pH, temperatura, concentración de sustrato. Ecuación de Michaelis Menten Significado e importancia de la Km. Inhibición competitiva y no competitiva. Regulación de la actividad enzimática: Enzimas alostéricas. Propiedades y cinética. Activación de zimógenos.

Modulación covalente. Isoenzimas. Propiedades

BOLILLA 2: ENZIMAS DE OXIDO-REDUCCION Y CADENA RESPIRATORIA. Reacciones de óxido-reducción.La oxidación en los sistemas biológicos. Oxidorreductasas : Deshidrogenasas nicotinamídicas. Deshidrogenasas flavínicas. Proteínas ferrosulfuradas. Coenzima Q. Citocromos y citocromo oxidasa Mitocondrias. Localización de

enzimas. TRANSPORTE ELECTRÓNICO. Cadena respiratoria. Complejos. Inhibidores. FOSFORILACION OXIDATIVA. Acoplamiento con el transporte electrónico. Hipótesis quimiosmótica. Inhibidores y desacoplantes. Control respiratorio. Otros sistemas de transporte electrónico: Sistema microsomal de transporte electrónico.

Oxigenasas. Catalasas Metabolismo de xenobioticos. Proceso de metabolización de fármacos. Reacciones de Fase I y II.

BOLILLA 3: METABOLISMO. Vías metabólicas. Digestión y absorción de carbohidratos. Ingreso de glucosa a las células. Familia de transportadores METABOLISMO DE CARBOHIDRATOS. GLICOLISIS. Vía de

Embden-Meyerhof. Fases de la glucólisis. Enzimas y cofactores que participan. Regulación enzimática. Formación de 2,3 bisfosfoglicerato. Rendimiento energético. Lanzadera de Glicerofosfato. Distintos tipos de fermentaciones. Utilización de fructosa y galactosa. Diabetes. Regulación de la glucemia. Comentario clínico.

BOLILLA 4: CICLO DE KREBS.. Generalidades. Descarboxilación oxidativa: complejo de la piruvato deshidrogenasa. Regulación. Destino de la acetil CoA. Reacciones del ciclo. Balance energético. Regulación del ciclo. Función anfibólica. Compartimentalización mitocondrial. Translocasas. Lanzadera aspartato-malato. VIA DE LAS PENTOSAS. Etapas. Función. Enzimas implicadas. Su relación con la glucólisis. Importancia metabólica.

BOLILLA 5: BIOSÍNTESIS DE CARBOHIDRATOS. Gluconeogénesis. Etapas. Regulación. Costo energético. Ciclos fútiles. METABOLISMO DEL GLUCOGENO. Glucógenolisis. Etapas y enzimas Glucógeno-génesis. Etapas y enzimas. Regulación por modulación covalente y regulación alostérica. Control hormonal

BOLILLA 6: LIPIDOS. Digestión y absorción de lípidos. METABOLISMO: Transporte de lípidos en el sistema circulatorio. Lipoproteínas. Composición. Apolipoproteínas. Metabolismo de los quilomicrones, de las lipoproteínas de muy baja densidad (VLDL) y de baja densidad (LDL). Lipoproteína (a) y riesgo de ateroesclerosis. Metabolismo de las lipoproteínas de alta densidad (HDL). Relevancia clínica. Degradación metabólica de los lípidos: hidrólisis de los triglicéridos por lipasas dependiente de AMPc. OXIDACION DE ACIDOS GRASOS: saturados e insaturados de número par de átomos de carbono (beta oxidación). Oxidación de ácidos grasos de número impar de carbonos. Oxidación peroxisómica de ácidos grasos. Rendimiento energético. CUERPOS CETONICOS: síntesis y utilización. Importancia metabólica y clínica.

BOLILLA 7: METABOLISMO DE LIPIDOS. Biosíntesis de ácidos grados saturados. Complejo multienzimático: Acido graso sintetasa. Regulación hormonal. Requerimiento energético. Elongación de los ácidos grasos. Desaturación de ácidos grasos. Acidos grasos esenciales. Eicosanoides.: Precursores. Generalidades de la síntesis. Aspectos clínicos. Biosíntesis de triglicéridos y fosfoglicéridos: precursores y enzimas. Metabolismo de colesterol. Regulación. Excreción. Relación con procesos patológicos. Biosíntesis y degradación de ácidos biliares. Funciones. Aspectos clínicos

BOLILLA 8: PROTEINAS Y AMINOACIDOS. Digestión de proteínas. Absorción de aminoácidos.METABOLISMO: Catabolismo del nitrógeno de aminoácidos. Transaminación. Desaminación oxidativa del

glutamato. Desaminación no oxidativa. Vías metabólicas del amoníaco. Formación de glutamina. Glutaminasa.Formas de excreción del nitrógeno (amoniotélicos, ureotélicos y uricotélicos). FORMACIÓN DE UREA: Ciclo de la ornitina. Costo energético. Interconexión con el ciclo de Krebs. Ciclo de la glucosa-alanina. Catabolismo del esqueleto carbonado de los aminoácidos. Aminoácidos cetogénicos y glucogénicos. Vías metabólicas a piruvato. Vías del alfa-cetoglutarato, del oxalacetato, de fumarato y acetoacetil CoA. Gluconeogénesis a partir de aminoácidos. Biosíntesis de aminoácidos no esenciales. Funciones precursoras de los aminoácidos. Biosíntesis de aminas biógenas:histamina, triptamina, tiramina, ácido gamma aminobutírico. Síntesis de creatina y creatinina.

BOLILLA 9: METABOLISMO DE NUCLEOTIDOS DE PURINA Y PIRIMIDINAS. Biosíntesis de nucleótidos púricos y pirimidínicos. Regulación. Recuperación de bases. Biosíntesis de desoxirribonucleótidos. Regulación. Catabolismo de las purinas y pirimidinas. Ácidos nucleicos. METABOLISMO DEL HEM. Biosíntesis. Enzimas reguladoras. Catabolismo.

BOLILLA 10: RECEPTORES. Características generales. Localización. Mecanismo de acción. Receptores intracelulares. Receptores de membrana plasmática. Receptores asociados a proteína G. Proteina G. Receptores proteína-tirosina quinasa Transducción y amplificación de señales: Sistema del AMP cíclico, de Fosfatidil-inositol-bifosfato (IP3), GMP cíclico. Señal de calcio. Tirosina quinasa Hormonas: características generales. Clasificación. Propiedades. Acción hormonal: insulina, glucagón, adrenalina y glucocorticoides sobre las principales vías metabólicas.

BOLILLA 11:INTEGRACIÓN Y CONTROL DE LOS PROCESOS METABOLICOS Papel regulador del ATP.Requerimientos de poder reductor. Compartimentalización enzimática. Niveles enzimáticos: Enzimas inducibles. Centros de control de la principales vías metabólicas: glicolítica, Ciclo de Krebs, Pentosa fosfato, Gluconeogénesis, Glucógenolisis, Glucógeno-génesis, lipogénesis, lipólisis. Conexiones claves: glucosa-6-fosfato, piruvato y acetil CoA. Perfil metabólico de los órganos más importantes: cerebro músculo, tejido adiposo, hígado. CICLO AYUNO-ALIMENTACIÓN. Adaptaciones metabólicas. Estado absortivo. Estado postabsortivo. Ayuno prolongado. Otras adaptaciones metabólicas (carrera corta, maratón).

VII - Plan de Trabajos Prácticos

Se realizan trabajos prácticos de laboratorio y problemas de aula. Los trabajos de laboratorio tienen por objeto enseñarle al alumno el uso de materiales biológicos, el manejo de instrumental y diferentes metodologías necesarios para analizar distintos procesos metabólicos. La resolución de problemas y ejercicios permiten fijar, aclarar y aplicar los conceptos teóricos sobre los distintos temas.

Programa de T.P de Laboratorio y Aula

TP 1(Laboratorio): Elaboración de Curvas de Calibración.

TP 2: (Aula): Enzimas. Purificación enzimática. Unidades. Inhibidores Enzimas. alostéricas. Isoenzimas. Enzimas reguladas por modulación covalente.

TP 3(Aula): Transporte electrónico: Cadena respiratoria Inhibidores. Fosforilación oxidativa. Inhibidores y desacoplantes. Control respiratorio.

TP 4 (Laboratorio): Metabolismo de carbohidratos. Vía glicolítica: Demostración de la fermentación anaeróbica en levaduras. Efecto Pasteur.

TP 5 (Aula): Metabolismo de carbohidratos: Vía glicolítica. Balance energético. Metabolismo del glucógeno .Ciclo de Krebs y Vía de las Pentosas.: Regulación. Balance energético.

TP 6 (Laboratorio): Metabolismo de lípidos. Determinación de lipoproteínas por precipitación selectiva con polianiones

TP 7 (Aula): Metabolismo de lípidos. Degradación de ácidos grasos. Regulación. Biosíntesis de ácidos grasos. Regulación

TP 8 (Laboratorio): Metabolismo de aminoácidos. Transaminación. Determinación de transaminasa glutámico oxalacética

(GOT) y transaminasa glutámico pirúvica (GPT)en suero y homogenato de hígado de rata. Método colorimétrico y U.V. TP 9: (Aula) Metabolismo de aminoácidos: Degradación de aminoácidos. Ciclo de la urea. Funciones precursoras de los

TP 9: (Aula) Metabolismo de aminoácidos: Degradación de aminoácidos. Ciclo de la urea. Funciones precursoras de los aminoácidos.

TP 10 (Laboratorio y Aula): Metabolismo de nucleótidos púricos. Determinación de actividad de Xantina oxidasa. Acción de Inhibidores. Problemas de aplicación.

TP 11 (Aula): Problemas de aplicación: Integración Metabólica

VIII - Regimen de Aprobación

REGLAMENTO DE TRABAJOS PRACTICOS

- 1.Los alumnos conocerán, al comenzar el cuatrimestre, las fechas y los temas de los trabajos prácticos y aula, como así también las fechas de las Evaluaciones Parciales, todo lo cual será informado en el avisador de la cátedra.
- 2.La fundamentación teórica de los trabajos prácticos de laboratorio y aula será indicada por el personal docente antes de la realización de los mismos
- 3.La bibliografía de cada uno de los temas a desarrollar estará a disposición de los alumnos en la Cátedra y conocerán la que se encuentra en Biblioteca para su consulta.
- 4. Previamente a la realización de los Trabajos Prácticos, durante o al final de su desarrollo, los alumnos serán interrogados por el personal docente para verificar sus conocimientos sobre la fundamentación teórica de los trabajos.
- 5. Cada alumno llevará un cuaderno o carpeta en el que consignará los resultados y observaciones de los Trabajos Prácticos realizado. Al final de cada jornada el Jefe de T.P firmará el informe con aprobación, constatando los resultados obtenidos.
- 6. Para la aprobación de los trabajos prácticos y para considerarse regulares, los alumnos deberán obtener resultados adecuados, responder satisfactoriamente a los interrogatorios y aprobar las Evaluaciones Parciales programadas.
- 7.De acuerdo a la reglamentación vigente (Ord. Nº 13/03) los alumnos deberán aprobar el cien por ciento (100%) de los trabajos prácticos y de las Evaluaciones parciales sobre los mismos.
- 8.Por la misma reglamentación, los alumnos tendrán 2(dos) oportunidades de recuperación de los trabajos prácticos realizados, debiendo aprobar en primera instancia el 75% (o su fracción menor) de los trabajos prácticos de laboratorio, completando la aprobación del noventa por ciento (90%) en la primera recuperación. En la segunda recuperación deberá totalizar la aprobación del cien por ciento (100%) de los trabajos prácticos de laboratorio. Se solicita igual exigencia para los trabajos prácticos de aula.
- 9. Para poder rendir cada Evaluación Parcial sobre los temas de trabajos prácticos, los alumnos deberán tener aprobado el cien por ciento (100%) de los trabajos prácticos cuyos contenidos se evalúan en dicha examinación. Estas evaluaciones podrán ser escritas u orales.
- 10. Teniendo en cuenta la misma reglamentación, los alumnos tendrán derecho a una primera recuperación para cada uno de los parciales pudiendo tener derecho a una segunda recuperación siempre que hayan aprobado en la primera recuperación el 75% de los parciales o su fracción entera menor.
- 11.El alumno que trabaja y la alumna madre de hijo de hasta seis años, tendrá derecho a una recuperación más de exámenes

parciales sobre el total de los mismos (Res. 371/85)

REGLAMENTO DE EXAMENES LIBRES

Sólo podrán optar por rendir la asignatura en carácter de alumno libre aquellos que habiendo realizado los trabajos prácticos de laboratorio hubiesen perdido la condición de regular por parciales no aprobados. De esta forma el alumno tendrá que cumplimentar los siguientes requisistos:

- 1)Aprobar un cuestionario escrito sobre la fundamentación teórica de todos los temas del Plan de Trabajos Prácticos, el que contendrá problemas de aplicación.
- 2)Una vez aprobado el punto 1, se sorteará un tema del plan de trabajos prácticos vigente, que los alumnos desarrollarán en el laboratorio, previa aprobación de un cuestionario escrito específico sobre el tema sorteado.
- 3)La realización del Trabajo de Laboratorio y los resultados obtenidos serán supervisados por el Jefe de Trabajos Prácticos y considerado junto con el informe elaborado por cada alumno para su aprobación.
- 4)Cumplidos los requisitos de los puntos 1, 2 y 3, los alumnos estarán en condiciones de presentarse al Examen Final.

IX - Bibliografía Básica

- [1] [1] BLANCO, A., "Química Biológica", Ed. El Ateneo, 8a edic., Bs. As. (2006). Reimpresión año 2007.
- [2] [2] David L. y Michael M.COX, LEHNINGER "Principios de Bioquímica", 4a edic., Ed. Omega (2006). Reimpresión año

[3] 2008.

- [4] [3] Voet, Voet y Pratt. "Fundamentos de Bioquímica- La vida a nivel molecular", 2º edic. Editorial Médica Panamericana. 2007. www.medicapanamericana.com/voet
- [5] [4] TRUDY McKEE, JAMES R. McKEE, "BIOQUIMICA", La base molecular de la vida, 3ª edic.McGraw-Hill.Interamericana.(2003)

X - Bibliografia Complementaria

- [1] [1] MELO RUIZ V., CUAMATZI TAPIA O.,"Bioquímica de los Procesos Metabólicos, Reverté ediciones, (2004)-
- [2] [2] MATHEWS, C., VAN HOLDEN, K., AHERN K., "Bioquímica", Tercera Edic, Ed. Pearson, Addison Wesley (2002)-
- [3] [3] MURRAY-GRANNER-MAYES-RODWELL, "Bioquímica de Harper", 14ª edic. Ed. El Manual Moderno (1997)
- [4] [4] CHAMPE, P., HARVEY R. Y FERRIER D., "Bioquímica", Ed McGraw-Hill Interamericana, (2005)
- [5] [5] ROSKOSKI, ROBERT, Jr., "Bioquímica", McGraw-Hill Interamericana. (1997)-
- [6] [6] STRYER, L., "Bioquímica", Ed. Reverté, 4ª ed. Tomos I y II (1995)-
- [7] [7] SMITH Y WOOD, "Biosíntesis", De. Addison-Wesley Iberoamericana (1998)-

XI - Resumen de Objetivos

Se espera que el alumno al finalizar el Curso sea capaz de:

- 1.-Comprender las propiedades generales de las enzimas y analizar sus características cinéticas y mecanismos de regulación.
- 2.-Conocer las principales vías metabólicas de degradación y biosíntesis, las reacciones enzimáticas fundamentales y los mecanismos de regulación.
- 3.- Entender los procesos de obtención de energía metabólica y su utilización en los distintos procesos biológicos.
- 4.- Relacionar la función de las hormonas en la regulación de los procesos metabólicos

XII - Resumen del Programa

- Bolilla 1: ENZIMAS. Características generales. Cinética. Mecanismos de regulación.
- Bolilla 2: ENZIMAS DE OXIDO REDUCCION. Cadena respiratoria. Fosforilación oxidativa. Metabolismo de xenobióticos.
- Bolilla 3: METABOLISMO. Características generales. Digestión y absorción de carbohidratos. METABOLISMO DE CARBOHIDRATOS. Glicólisis.
- Bolilla 4: CICLO DE KREBS.Ciclo de Krebs. Naturaleza anfibólica. VIA DE LAS PENTOSAS Importancia metabólica.
- Bolilla 5: BIOSÍNTESIS DE CARBOHIDRATOS: Gluconeogénesis. Metabolismo del glucógeno
- Bolilla 6: LIPIDOS. Digestión y absorción. METABOLISMO: transporte de lípidos en el sistema circulatorio.

Lipoproteínas. Degradación de ácidos grasos saturados. Beta oxidación. Oxidación de ácidos grasos no saturados. Cuerpos cetónicos.

Bolilla 7: METABOLISMO DE LIPIDOS. Biosíntesis de ácidos grasos saturados. Biosíntesis de triglicéridos y fosfoglicéridos. Metabolismo del colesterol. Acidos Biliares.

Bolilla 8: METABOLISMO DE AMINOACIDOS. Destino del grupo amino. Ciclo de la Urea.Destino del esqueleto carbonado. Importancia metabólica. Biosíntesis de aminoácidos.

Bolilla 9: METABOLISMO DE NUCLEOTIDOS PURICOS Y PIRIMIDINICOS. Síntesis y degradación. Importancia metabólica METABOLISMO DEL HEMO.

Bolilla 10: RECEPTORES. Mecanismo de acción. Sistemas de transmisión de señales. Principales reguladores de las vías metabólicas: insulina, glucagón, adrenalina, glucocorticoides.

Bolilla 11: INTEGRACIÓN METABÓLICA. Papel regulador del ATP. Centros de control de las principales vías metabólicas. Perfil metabólico de los órganos más importantes. Ciclo ayuno-alimentación.

XIII - Imprevistos

En caso de huelga docente se desarrollarán los temas teóricos de trabajos prácticos completos y se dará la bibliografía y consulta de temas que no puedan dictarse por falta de tiempo.

Si no hubiesen reactivos disponibles en plaza para realizar un trabajo práctico se darán problemas de aplicación del tema correspondiente.

XIV - Otros