

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas

(Programa del año 2010) (Programa en trámite de aprobación) (Presentado el 27/12/2010 09:12:09)

Area: Matematicas

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
MATEMATICAS ESPECIALES	ING. EN ALIMENTOS	7/08	2010	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ALVAREZ, HUGO CESAR	Prof. Responsable	P.Tit. Exc	40 Hs
RANZUGLIA, GABRIELA ALICIA	Responsable de Práctico	A.1ra Exc	40 Hs
SOTA, RODRIGO ARIEL	Responsable de Práctico	A.1ra Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	2 Hs	3 Hs	Hs	5 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
09/08/2010	19/11/2010	15	75

IV - Fundamentación

Este curso se ubica en el segundo cuatrimestre del segundo año en el Plan de Estudio de la correspondiente carrera. Esto se debe a que utiliza como conocimientos previos los desarrollados en Análisis Matemático I, Álgebra y Análisis Matemático II, con el apoyo de conceptos que involucran fenómenos físicos para su aplicación. Todos los temas a tratar en el curso intentan dar fundamento teórico a posteriores modelos matemáticos representativos de fenómenos particulares, como así también analizar fenómenos y determinar modelos simplificados que los representen. También se pretende dar métodos de resolución de dichos modelos estándar.

V - Objetivos / Resultados de Aprendizaje

Modelar, resolver e interpretar problemas que involucren conceptos geométricos y físicos. Distinguir y aplicar con destreza los métodos de solución de ecuaciones diferenciales de primer y segundo orden.

Resolver ecuaciones diferenciales mediante el uso de un método operacional como la transformada de Laplace.

Estudiar Series de Fourier para resolver e interpretar problemas que involucran fenómenos periódicos en la física y en sus aplicaciones en la ingeniería.

Resolver algunas ecuaciones diferenciales parciales importantes de la física y la ingeniería.

Aprender teoría de funciones complejas que es necesaria para resolver algunos problemas interesantes de conducción del calor, dinámica de fluidos, etc.

VI - Contenidos

Ecuaciones diferenciales de primer orden: Conceptos e ideas básicas. Ecuaciones diferenciales separables. Ecuaciones diferenciales lineales. Campos direccionales, iteración. Existencia y unicidad de las soluciones. Modelado: Fechamiento por carbono radiactivo. Ley de enfriamiento de Newton. Evaporación.

Unidad 2: Ecuaciones Diferenciales Lineales de Segundo Orden

Ecuaciones lineales homogéneas. Ecuaciones homogéneas con coeficientes constantes. Función exponencial compleja. Teoría de existencia y unicidad. Wronskiano. Ecuaciones no homogéneas. Solución por coeficientes indeterminados. Modelado: oscilaciones libres (sistema masa-resorte). Oscilaciones forzadas.

Unidad 3: Transformada de Laplace

Transformada de Laplace. Transformada inversa. Linealidad. Transformadas de derivadas e integrales. Traslación. Función escalón unitario. Función Delta de Dirac. Derivación e integración de transformadas.

Unidad 4: Series de Fourier

Funciones periódicas. Series trigonométricas. Series de Fourier: Fórmulas de Euler para los coeficientes de Fourier. Ortogonalidad del sistema trigonométrico. Convergencia y suma de series de Fourier. Funciones de cualquier periodo p. Funciones pares e impares. Desarrollos de medio rango.

Unidad 5: Ecuaciones Diferenciales Parciales

Conceptos básicos. Modelado: cuerda vibratoria y ecuación de onda. Separación de variables, uso de series de Fourier. Ecuación del calor: solución por series de Fourier.

Unidad 6: Funciones Analíticas Complejas

Derivada de funciones complejas. Relación con la diferencial de una transformación de R2. Ecuaciones de Cauchy – Riemann. Funciones armónicas. Determinación de la conjugada. Funciones trascendentes. El logaritmo complejo. Integración. Teorema de Cauchy. Regla de Barrow. Índice de una curva. Existencia de primitivas.

VII - Plan de Trabajos Prácticos

Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en teoría.

VIII - Regimen de Aprobación

I: Sistema de regularidad

- Es obligatoria la asistencia al 80 de las clases.
- Aprobación de dos evaluaciones parciales con un porcentaje no inferior al 60%. Cada una de ellas tendrá una recuperación.
- Los alumnos que hayan obtenido la condición de regular, aprobarán la materia a través de un examen final en las fechas que el calendario universitario prevé para esta actividad.
- II.- Para alumnos libres:

La aprobación de la materia se obtendrá rindiendo un examen práctico escrito y en caso de aprobar éste, deberá rendir en ese mismo turno de examen, un examen teórico.

IX - Bibliografía Básica

[1] • E. Kreyszig, Matemática Avanzada para Ingeniería, 3ª ed. Vols. I y II, Limusa Wiley, 2008.

X - Bibliografia Complementaria

- [1] W.E. Boyce y R.C. DiPrima, Ecuaciones Diferenciales Elementales y Problemas con Valores en la Frontera. Limusa, 1994.
- [2] H.F. Weinberger, Ecuaciones Diferenciales en Derivadas Parciales, Reverté, 1970
- [3] W. Rudin, Real and Complex Análisis, 3rd. ed., McGraw-Hill, 1987.
- [4] E. M. Stein and R. Shakarchi, Fourier Analysis, an introduction, Princeton University Press, 2002.
- [5] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2003.
- [6] M. Balanzat, Matemática Avanzada para la Física, Eudeba,

- [7] R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill, 1963.
- [8] L. V. Ahlfors, Análisis de una variable Compleja, Aguilar, 1966.
- [9] H. Cartan, Théorie élémentaire des functions analytiques d'une ou plousiers variables complexes, Hermann, 1969.

XI - Resumen de Objetivos

Modelar, resolver e interpretar problemas que involucren conceptos geométricos y físicos. Distinguir y aplicar con destreza los métodos de solución de ecuaciones diferenciales de primer y segundo orden.

Resolver ecuaciones diferenciales mediante el uso de un método operacional como la transformada de Laplace.

Estudiar Series de Fourier para resolver e interpretar problemas que involucran fenómenos periódicos en la física y en sus aplicaciones en la ingeniería.

Resolver algunas ecuaciones diferenciales parciales importantes de la física y la ingeniería.

Aprender teoría de funciones complejas que es necesaria para resolver algunos problemas interesantes de conducción del calor, dinámica de fluidos, etc.

XII - Resumen del Programa

Unidad 1:	Ecuaciones	Diferenciales	Ordinarias
-----------	------------	---------------	------------

Unidad 2: Ecuaciones Diferenciales Lineales de Segundo Orden

Unidad 3: Transformada de Laplace

Unidad 4: Series de Fourier

Unidad 5: Ecuaciones Diferenciales Parciales

Unidad 6: Funciones Analíticas Complejas

XIII - Imprevistos	
XIV - Otros	

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		