

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Informatica

(Programa del año 2010) (Programa en trámite de aprobación) (Presentado el 02/09/2010 11:49:05)

Area: Area V: Automatas y Lenguajes

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
ANALISIS COMPARATIVO DE LENGUAJES	PROF.EN CS.DE LA COMPUTACION	06/09	2010	2° cuatrimestre
ANALISIS COMPARATIVO DE LENGUAJES	LIC.EN CS.DE LA COMPUTACION	006/0	2010	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ERRECALDE, MARCELO LUIS	Prof. Responsable	P.Adj Exc	40 Hs
ROGGERO, PATRICIA BEATRIZ	Prof. Responsable	P.Adj Exc	40 Hs
CAGNINA, LETICIA CECILIA	Responsable de Práctico	JTP Exc	40 Hs
FUNEZ, DARIO GUSTAVO	Auxiliar de Práctico	A.1ra Exc	40 Hs
GATICA, CLAUDIA RUTH	Auxiliar de Práctico	A.1ra Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	3 Hs	4 Hs	1 Hs	8 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
09/08/2010	19/11/2010	15	120

IV - Fundamentación

Este curso trata sobre los aspectos principales del diseño e implementación de los lenguajes de programación. También se incluye la teoría y los modelos formales subyacentes que forman la base para las decisiones tomadas en la creación de este tipo de lenguajes.

En este sentido, el curso complementa los contenidos introducidos en Programación I y Programación II, donde el énfasis fue puesto en los aspectos de programación utilizando lenguajes representativos de algunos de los principales paradigmas de programación.

En este curso la descripción de los lenguajes se realiza por medio de la arquitectura de hardware y software subyacente que se requiere para la ejecución de programas escritos en estos lenguajes.

Los modelos formales que dan origen a los principales paradigmas de programación también son analizados con una visión más general.

Los contenidos del curso se corresponden con las unidades de conocimiento recomendadas por la ACM/IEEE Computer Society Joint Curriculum Task Force, para el área de lenguajes de programación.

En el convencimiento de que los aspectos básicos del diseño de compiladores deberían formar parte del conocimiento general de cualquier buen programador, este curso muestra de qué manera son compiladas las distintas construcciones de los lenguajes.

Los aspectos abordados, relacionados a la teoría formal de Lenguajes y parsing servirán además como introducción a tópicos más avanzados a desarrollarse en otros cursos de la carrera como Autómatas y Lenguajes, y Compiladores.

V - Objetivos / Resultados de Aprendizaje

Al finalizar el curso los alumnos serán capaces de:

Evaluar en forma crítica distintos lenguajes de programación existentes y futuros.

Responder a cuestiones tales como las motivaciones de la existencia de tantos lenguajes de programación, cómo y porqué fueron desarrollados, en qué se asemejan y difieren.

Realizar un curso avanzado sobre el estudio del diseño y construcción de compiladores.

Reconocer los paradigmas claves usados en el desarrollo de lenguajes de programación modernos, sus bases teóricas, aplicativas y de implementación.

Entender la implementación de distintos lenguajes con suficiente detalle como para reconocer la relación entre un programa fuente y su comportamiento en ejecución.

Extender sus conocimientos sobre los tópicos anteriores con bibliografía adecuada y mínima supervisión.

VI - Contenidos

UNIDAD 1

Razones del estudio de lenguajes de programación. Historia de los lenguajes de programación. Características de un buen lenguaje. La estructura y operación de una computadora. Computadora de hardware, de firmware y simulada por software. Traductores. Computadoras virtuales y ligaduras. Tiempos de ligadura. Paradigmas de lenguajes.

UNIDAD 2

Programación Lógica. Prolog. Elementos básicos: hechos, consultas y reglas. Variables. Variables anónimas. Unificación. Reglas recursivas. Proceso de backtracking. Functores. Listas.

UNIDAD 3

Sintaxis de los lenguajes de programación. Criterios sintácticos generales. Métodos para la descripción de semántica. Elementos sintácticos de un lenguaje. Estructura programa-subprograma general. Etapas en la traducción. Modelos de traducción formales. Gramáticas Libres del Contexto. Ambigüedad. Gramáticas Regulares. Autómatas finitos. Expresiones regulares. Autómatas Pushdown.

UNIDAD 4

Propiedades de tipos y objetos. Tipos de datos. Especificación e implementación de tipos de datos elementales.

Declaraciones. Chequeo de tipos. Conversión de tipos. Asignación e inicialización. Tipos de datos numéricos. Enumeraciones. Booleanos. Caracteres. Tipos de datos estructurados. Especificación e implementación. Vectores y arreglos. Registros. Cadenas de caracteres. Punteros. Conjuntos.

UNIDAD 5

Tipos de datos abstractos. Evolución del concepto de tipo de datos. Ocultamiento de la información. Encapsulamiento mediante subprogramas. Tipos de datos abstractos genéricos. Programación Orientada a Objetos: Herencia, Polimorfismo y ligadura dinámica. Subclases y subtipos. Herencia simple y múltiple. Aspectos de diseño en Smalltalk, C++ y Java.

UNIDAD 6

Administración de memoria. Fases de la administración de memoria. Administración de memoria estática. Administración de memoria basada en Pila. Heap con elementos de tamaño fijo y de tamaño variable.

UNIDAD 7

Lenguaje Java. Caracteristicas básicas. Tipos. Estructuras de control. Arreglos. Clases. Herencia. Polimorfismo. Control de acceso. Paquetes. Interfaces (Interfaz). Excepciones. Entrada - salida.

UNIDAD 8

Control de subprogramas. Llamada-retorno simple. Definición y activación de subprogramas. Subprogramas recursivos. Control de datos. Ambientes de referenciación. Alcance estático y dinámico. Estructura de bloques. Datos compartidos en subprogramas. Parámetros. Pasaje de parámetros. Ambientes comunes explícitos. Alcance dinámico. Alcance estático.

UNIDAD 9

Control de secuencia explícito e implícito. Secuenciamiento en expresiones aritméticas. Representación de árbol. Representación en tiempo de ejecución. Control de secuencia entre sentencias. Sentencias estructuradas.

UNIDAD 10

Variantes en control de subprogramas. Excepciones. Corutinas. Subprogramas planificados. Comandos en guardia. Tareas.

VII - Plan de Trabajos Prácticos

Práctico 1: Programación Lógica - Prolog (con laboratorio).

Práctico 2: Lenguajes - Aspectos Sintácticos.

Práctico 3: Tipos de Datos Elementales.

Práctico 4: Tipos de Datos Estructurados.

Práctico 5: Administración de Memoria.

Práctico 6: Java (con laboratorio).

Práctico 7: Control de Secuencia y Datos en Subprogramas.

Práctico 8: Secuenciamiento en expresiones

Práctico 9: Variantes en control de subprogramas.

VIII - Regimen de Aprobación

A. Régimen para alumnos Regulares:

- 1) Aprobar dos prácticos de máquina: Lenguaje Prolog y Lenguaje Java.
- 2) Entregar al menos el 80% de los prácticos de aula requeridos por la cátedra.
- 3) Aprobar un examen parcial, que incluye todos los prácticos, con al menos el 70% correcto del total.
- Al menos el 50% de cada uno de los ejercicios involucrados en el parcial deberán ser completados correctamente para considerar su aprobación.
- 4) El parcial tendrá 1 (una) recuperación, más la recuperación adicional para aquellos alumnos que trabajan, según conste en la lista de regulares emitida por Sección Alumnos.
- 5) Se requiere el 70% de asistencia a clase, condición que será flexibilizada para los alumnos que hayan presentado el correspondiente certificado de trabajo en Sección Alumnos.
- B. La materia no admite régimen promocional.
- C. Para aprobar la materia el alumno deberá rendir un examen final, el cual podrá ser oral y/o escrito.
- D. No se admite rendir la materia en condición de libre.

IX - Bibliografía Básica

- [1] "Programming Languages Design and Implementation". Pratt, Terrence y Zelkowitz, Marvin. Cuarta edición. Prentice Hall,2001.
- [2] "Lenguajes de Programación Diseño e Implementación". Pratt, Terrence y Zelkowitz, Marvin. Tercera edición. Prentice Hall, 1999.
- [3] "Concepts of Programming Languages". Sebesta, Robert. Addison-Wesley. Cuarta Edición, 1999 y Sexta Edición, 2004.
- [4] "Prolog, programming for artificial intelligence". Bratko, Ivan. Addison-Wesley. Tercera Edición, 2001.
- [5] "El lenguaje de Programación C". Kernighan, Brian y Ritchie, Dennies. Prentice Hall, 1991.
- [6] Apuntes de la materia de los lenguajes C, C++ y Lisp.
- [7] "Introduction to Java". Carlos Kavka. ICTP, 2004.
- [8] "Introduction to Java". Hume, J.N. Patterson y Stephenson, Christine. Canada Holt Software Associates. Primera Edición, 2000.
- [9] The Java programming language. Arnold, Ken y Golsing, James. Addison Wesley. Segunda Edición, 1999.

X - Bibliografia Complementaria

- [1] "Programming Languages A Grand Tour". Editor: Horowitz, Ellis. Tercera Edición. Computer Science Press, 1987.
- [2] "Smalltalk-80. The Language and its implementation". Goldberg, Adele y Robson, David. Addison-Wesley, 1985.
- [3] The Java class libraries. Chan, Patrick Lee, Rosanna y Kramer, Douglas. Addsion Wesley. Segunda Edición, 1998.
- [4] "Piensa en Java". Eckel Bruce. Pearson Alhambra. Cuarta Edición, 2007.

XI - Resumen de Objetivos

El curso tiene como objetivo introducir al alumno a la problemática del diseño e implementación de lenguajes, incluyendo fundamentos teóricos y modelos formales. El estudio se realiza teniendo en cuenta todos los paradigmas actuales de programación, realizando un estudio comparativo de las técnicas de implementación de cada uno de ellos.

XII - Resumen del Programa

Historia de los lenguajes de programación. Evolución de los paradigmas de programación. Computadoras virtuales. Sistemas de traducción. Sintaxis y semántica. Gramáticas, expresiones regulares, autómatas. Características esenciales de los lenguajes

XIII - Imprevistos		
XIV - Otros		
ELEVA	CIÓN y APROBACIÓN DE ESTE PROGRAMA	
	Profesor Responsable	
Firma:		
Aclaración:		

de programación y su implementación: tipos de datos y su representación, control de secuencia y datos. Administración de

Memoria. Abstracción de Datos. Programación lógica, lenguaje Prolog. Lenguaje Java. Control de datos a nivel de

subprogramas. Variantes en el control de subprogramas.

Fecha: