

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Fisica

(Programa del año 2009) (Programa en trámite de aprobación) (Presentado el 21/10/2009 12:16:02)

Area: Area V: Electronica y Microprocesadores

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
DISEÑO DE SISTEMAS DIGITALES	ING.ELECT.ORIENT.SIST.DIGIT.	13/08	2009	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
SOSA PAEZ, CARLOS FEDERICO	Prof. Responsable	P.Adj Exc	40 Hs
AGUILERA, FACUNDO	Auxiliar de Práctico	A.2da Simp	10 Hs
AIRABELLA, ANDRES MIGUEL	Auxiliar de Práctico	A.1ra Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. To			Total	
Hs	30 Hs	Hs	60 Hs	

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
10/08/2009	20/11/2009	15	90

IV - Fundamentación

La evolución de la tecnología microelectrónica ha sido rápida y profunda en las últimas décadas, lo que ha posibilitado que hoy se pueda diseñar circuitos integrados de elevada complejidad. Este hecho, unido a las demandas del mercado por reducir el tiempo y el costo de diseño, plantea retos importantes en el campo del diseño de sistemas digitales. Por eso, esta actividad curricular es necesaria para la introducción de una metodología de diseño basada en la descripción del comportamiento de los circuitos mediante lenguaje de descripción de hardware, utilizando herramientas de síntesis y de simulación, e implementando estos diseños en dispositivos de Lógica Programable.

V - Objetivos / Resultados de Aprendizaje

El objetivo del curso es que los alumnos, al terminarlo, conozcan una metodología de diseño basada en la descripción del comportamiento de los circuitos mediante lenguaje de descripción de hardware, puedan simular el comportamiento de su diseño e implementarlos en plaquetas de desarrollo. Para ello el alumno aprenderá el lenguaje VHDL, el uso de herramientas informáticas de diseño, simulación y síntesis de última generación, como así también conocerán las distintas arquitecturas y características de los Dispositivos Lógicos Programables.

VI - Contenidos

BOLILLA 1: Evolución del diseño electrónico. Los lenguajes de descripción de hardware.. Uso de VHDL para síntesis y diseño. Metodologías de diseño.

BOLILLA 2: Introducción a la Lógica Programable. Dispositivos de Lógica Programable. PLD. CPLD. FPGA Características principales. Arquitectura. Aplicaciones.

BOLILLA 3: Modelos de Hardware. Unidades básicas de diseño: Entidades, Arquitecturas, tipos de Arquitecturas, Comparación arquitecturas. Modelado para síntesis versus modelado para simulación. Múltiples drivers y Función Resolución. Identificadores, Objetos, Tipos de datos, Expresiones y operadores, atributos.

BOLILLA 4: Lógica Combinacional: Declaracionesando Establecidos (statements) concurrentes: Ecuaciones booleanas, Operadores Lógicos, With-select-when, when-else. Operadores relacionales, Operadores sobrecargados. Instanciación de componentes Lógica Combinacional usando establecidos (statements) secuenciales: Procesos. if-then-else. Case-when. Lógica sincrónica. Wait until statement. Funciones Flanco creciente y decreciente. Reset. Reset asincrono y preset. Buffer three-state. Señales bidireccionales. Loop. Registros no intencionales

BOLILLA 5: Repaso de máquinas de estado. Diseño de máquinas de estado usando vhdl. Inicialización de máquinas de estado. Síntesis de máquinas de estados finitas. Utilización de recursos de área y velocidad. Consideraciones adicionales de diseño.

BOLILLA 6: Librerías, Paquetes y componentes reusables. Declaración de paquetes. Cuerpo de paquetes. Componentes. Construyendo una librería de componentes. Componentes genéricos y parametrizados. Test benches

BOLILLA 7: Funciones. Funciones de conversión de tipo. Usando funciones. Operadores sobrecargados. Funciones sobrecargadas. Funciones estándar. Funciones estándar vs. Funciones definidas por el usuario. Procedimientos.

BOLILLA 8: Síntesis e implementación de diseño. Guías generales de vhdl para síntesis. Como inferir latches, flip flops y registros. VHDL para generar circuitos combinacionales. El proceso de síntesis.

BOLILLA 9: Optimizando Data-Paths: Sumadores. Sumadores con Ripple Carry. Sumadores Carry Lookahead. Comparadores de magnitudes. Contadores rápidos.

VII - Plan de Trabajos Prácticos

T.P. Nº1:Herramienta de Software.. Flujo de diseño

T.P. N°2: Introducción placa de desarrollo XS95

T.P. N°3: Diseño de lógica combinacional

T.P. N°4: Diseño de lógica secuencial.

T.P. N°5: Maquinas de Estado.

T.P. Nº6: Uso de packages y librerías.

T.P. N°7: Proyecto integrador

VIII - Regimen de Aprobación

Para obtener la regularidad y poder rendir el examen final como alumno regular será necesario:

- •Haber asistido al menos al 80% de las clases de trabajos prácticos.
- •Haber aprobado el 100% de los trabajos prácticos.
- •Haber aprobado la totalidad de los exámenes parciales.
- •Para la aprobación de los trabajos prácticos será necesario, además de haberlos realizado satisfactoriamente a juicio del responsable del laboratorio, responder correctamente a las preguntas que sobre el tema de la práctica se les formule. antes o durante el práctico.
- •Los alumnos tendrán derecho a una sola recuperación por práctico, pero no mas de tres en total.
- •Los alumnos tendrán derecho a una recuperación de todos los exámenes parciales.
- •En caso de no haber aprobado en ninguna de las dos instancias, solo uno de los exámenes parciales, los alumnos que trabajan tendrán derecho a una recuperación extraordinaria para ese examen parcial.

Para obtener la promoción sin examen final será necesario:

- •Haber asistido al menos al 80% de las clases de trabajos prácticos.
- •Haber aprobado el 100% de los trabajos prácticos.
- •Haber aprobado la totalidad de los exámenes parciales en alguna de las dos instancias con nota mayor de 7 (siete)

- •Haber aprobado una evaluación integradora con nota mayor de 7 (siete)
- •Para la aprobación de los trabajos prácticos será necesario, además de haberlos realizado satisfactoriamente a juicio del responsable del laboratorio, responder correctamente a las preguntas que sobre el tema de la práctica se les formule. antes o durante el práctico.
- •Los alumnos tendrán derecho a una sola recuperación por práctico, pero no mas de tres en total.
- •Los alumnos tendrán derecho a una recuperación de todos los exámenes parciales.

IX - Bibliografía Básica

- [1] VHDL for Programmable Logic- Kevin Skahill- Addison-wesley
- [2] Digital Design and Modeling with VHDL and Synthesis. K.C.Chang-IEEE
- [3] VHDL- Lenguaje estándar de diseño electrónico. Terés, Torroja, Olcoz, Villar- McGrawHil

X - Bibliografia Complementaria

- [1] FPGA and CPLD Architectures: A Tutorial Brown S, Rose J. IEEE Design & Test of Computer 1996
- [2] Engineering Digital Design Second Edition, Revised RICHARD F. TINDER (Pag 82)
- [3] CMOS IC LAYOUT Concepts, Methodologies, and Tools Dan Clein Chap I y II
- [4] VHDL Programming by Example Douglas L. Perry Fourth Edition 2002 McGraw-Hill.
- [5] RTL HARDWARE DESIGN USING VHDL PONG P. CHU 2006 Wiley & Sons

XI - Resumen de Objetivos

El objetivo del curso es lograr una metodología para el diseño de circuitos integrados basado en la descripcion del comportamiento del mismo, usando lenguajes de descripcion de hardware. Para ello el alumno aprenderá a manejar herramientas informaticas de diseño de última generación, podrá simular el comportamiento de su diseño y además, podrá implementarlo utilizando plaquetas de desarrollo. Conocerán al final del curso distintos Dispositivos Lógicos Programables donde podrán implementar su diseño y ponerlo en funcionamiento.

XII - Resumen del Programa

Modelado de sistemas Digitales con lenguajes de descripcion de hardware VHDL. Criterios de diseño de Sistemas Digitales, optimización en performance versus utilización de recursos. Herramientas de diseño electronico automaticas (EDA)para el diseño, la simulación y sistesis de sistemas digitales. Implementación de sistemas digitales en Dispositivos Logicos Programables como PLD, CPLD y FPGA.

XIII - Imprevistos			
XIV - Otros			

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA			
	Profesor Responsable		
Firma:			
Aclaración:			
Fecha:			